AD-A130 899 A SOFTWARE SCIENCE ANALYZER FOR COBOL REVISION(U) OHID
STATE UNIV COLUMBUS COMPUTER AND INFORMATION SCIENCE
RES.. K C FUNG ET AL. 1982 OSU-CISRC-TR-83-2-REV

UNCLASSIFIED ARD-17150.3-EL DAAG29-80-K-0061 F/G 9/2

s
/

m .0t e
22 |

7 i

“ e
lle

22 s s

HEN

MICROCOPY RESOLUTION TEST 440!

4

DNIC FILE COPY

SCIEN
HES.EHH

DISTRIBUTION STATEMENT A

Distribution Unlimited

A AR) B

b,

TECHNICAL REPORT SER!

CURPUTER &
(FLRRATILN

[

"H CENTER

83 07 28 043

Appioved for public release]] THE OHIQ STATE UNIVERSITY COLUMBUS, OHIO
1

| QSU~CISRC-TR-83-2

A SOFTWARE SCIENCE ARALYZER
FOR COBOL

K.C. FUNG
N.C. DEBNATH
and

S.H. ZWEBEN

Research supported in part by
U. S. Army Research Office

Contract DAAG29-80-k-0061

Counputer and Information Science Research Center
The Ohio State University
Columbus, OH 43210

DISTRIBUTION STATEMENT A
Approved for public rclease .
Distribution Unlimitd ' Revised Autumn 1982

— B

ABSTRACT

“An analyzer of COBOL programs which computes the metrics from software

science is described. The report discusses the overall design of the

analyzer, including detailed descriptions of each of its modules. It also

contains instructions for the use and maintenance of the analyzer at Ohio

State University.

avall and/ar

i Special

-

ii

PREFACE

This report is the result of research supported in part by the U, S.
Army Research Office of Scientific Research under contract
DAAG29-80-k-0061. It is being published by the Computer and Information
Science Research Center (CISRC) of the Ohio State University in comjunction
with the Department of Computer and Information Science. CISRC is an
interdisciplinary research organization whicn consists of the staff,
graduate students, and faculty of many University departments and

laboratories.

iii

e

INDEX TERMS

Software Engineering, Software Metrics, Software Science, COBOL

iv

canaini

TABLE OF CONTENTS

Abstract..Lx
Preface..civvuiiiieniiennnninnnnnnecennnnnnnnnnnn. Cesereen 111
IndeX TermS.ueeeseseeonnooconnnesnnnn. cttteceraenns ceaseanlV

Chapter 1: INTRODUCTION . c et veetiietanerennnnnennneennannnaal

Chapter 2: OVERVIEW OF THE DESIGN OF
THE COBOL ANALYZER....eeuruevuenennennnnnnnnnnnsd

2.1 Program R LT o R
2.2 Internal Data StruUCLUTE......eeove.... ceeenn 7

2.3 Structure 1033 - B - 14

2.4 Description of Major Modules...............19

Chapter 3: USE OF THE COBOL ANALYZER.e'vuuennnnnnnaan eeesa23
3.1 Default Mode.eeeusereennnensnnnennennnnnn.. 24
3.2 User Defined Operators and Operands........28

3.3 Output of the Analyzer.....................37
Chapter 4: SUMMARY . .uiurennnenenennnnnnnonnnnnnnnnn.. ceees39

References: DI I X o

i

l.lIllllllll-'-“-IlIllI-l-----.l-I!-lII--'-"-'--FIl-I-IIIII-l-u--L

APPENDIX.A: DESIGN DOCMNT...-ocn--.ooco.oc.oa.rooo..lon-41

Module CNTPGM...caveecocoonnasacocsssscacennsssedl
Module INITIAL...eecosccsvonssoosscancosscancssidd
Module INITIAZ..c.oceccscvococcscscacansssaocssldd
Module INITBLD.veeseceoococcossocsoessscnnssosecdd
Module SCRNKWD...coeoevcovsccccnsnnrsoncssssacseacit]
Module ACTION......ceevecerscscccscnccossaacassd8
Module SURCH...ccoseeccccvsocnsosassasssssaesesdl
Module INSERT ..ecvsesscocescancccansssosssssnenadl
Module COMPARE...cccecavcecoccscovrssosssacassosedd
Module FREETKN..veeeeoncecoscasosconccsssascseeedd
Module COUNTDD.....veececvovococcooasssnnnnnssasdd
Module GETOKEN....ecseesooososssassosssssanaasasib
Module GETNBIK..veeeeeoocovoctsovoasvasssoneacedl
Module GETCHAR.....ccoveocccsvscesoscocsssassesd8
Module CUTOKEN....occecoscsecsascsnensssasaccesadd
Module RECEDE....coceeevorecscnocsssssvasncesssbl
Module OPERATR...ccccevccrccesscocscssssascnsssbdl
Module NOISE...eeevevscescccssoncsasccssnnssoeabl
Module OPERAND....cecvecsossocesvencscsscssssesedl
Module COUNTPD..ceeeceveccsssonscssancassnnscnssadd
Module BLDTRKN.:eeeetesccosscssescscvcssassnnseedO
Module FILTERl...ceveeoscsassevcncccocsscssonesed?
Module FILTERZ.......................-.........69
Module FILTER3..cccncescecvvecsccsssesscssoncssl/l
Module STAT.vceesccsvcscccssossocencccssssnssnell
Module REORDER...ccccencsosscsnvvosconssasanneeell
Module INSERT2..ceeecesocccsocossccscaassacccansell
Module SORT8.cceeevsncosascescccsscsccssncsan-alb
Module SOFTMET .. cccoecesoccccascasascnscsc-oncall
Module PRNTWID..eceeeovocosoncorsoososassssscconal8
Module TRAVERSE....cccvcecsccsroccvsscsnsssassessBd0
Module NODE=OUT..eseccvessscccssccsscnsasscsseedl
! Module REPORT cecececccvsrsovsenonsosssscesncncesadl

Module PRINTl..eeeecacccasccesnsscnssnnnascsaseedd
! Module GETOKO.eeeeveoovecoscacancncncsonsecesssdd
Module GETRARO..evcevceccovsccocossssasacsaaceeedd
Module GETOKl...ecveesvosocccassoscassaocsoncesas8)
Module GETRARl...vcveevecococcssvosscsccccnsss 836

vi

Appendl.x-B: FILE DESCRIPTIONS.C..uo'.‘..ll..‘..-........l087

Default Operator File for Data Division...88
Default Noiseword File for Data Division,.89
Default Operator File for Procedure Div...90
Default Noiseword File for Procedure Div,.93
File INITW..eeeaoecsasnnacsasasccnsnsoaeessdd
File INITR.‘I....l.....Q.I.....Q..l.0.....94
Production JCL (OSUCNTPM)...ccceanacncssesdb
JCL INTERNAL.veeccecococncsscascssnsascnsedd
Production JCL (WIDJET):..eeececosncccssseedd
0 ANALYZE Command EXEC Program....e.seececess937
1 Sample HandoUL..ecesacosssvscnvscssascesessIB

W IR I W
L]
=0 00~ S WM

AppendiX"C: MAINTENANCE PROCEDURE...oo.ooloooo.ooc.l.oo.angg
Appendix-D: INVOKING THE PURDUE ANALYZER AT IRCC.........l06
D.l1 JCL Required to Run the Purdue Amalyzer..l06

D.2 Output of the Purdue Analyzer......¢.....108
D.3 Comparison of OSU and Purdue Analyzers...ll0

vii

CHAPTER 1

INTRODUCTION

It is a major theory of software science (Halstead 77) that if we
divide the basic elements of a given program into operators and operands
according to a proposed counting strategy, the statistics of these
operators and operands exhibit some interesting relationships to aspects of
software quality. It is hopeful that these relationships can form a
quantitative basis for the analysis of software. In order for this
approach to gain widespread acceptance, it is necessary for these

relationships to be validated on different classes of programs.

Halstead (Halstead 79), in a treatise of software science research,
cites many studies which have sought to validate these relatiomships on
programs written in many languages. Interestingly, though, none of these
analyses involve COBOL! More recently, (Zweben and Fung 79) reported on
the results of a preliminary study of COBOL programs which were counted
manually. However, in order to gather large amounts of data on COBOL
programs it is necessary to be able to count the operators and operands of
COBOL programs mechanically. The computer program (or analyzer, as it acts
almost like a lexical analyzer for COBOL) described in this report is the

result of such an effort, undertaken at The Ohio State University, to

streamline the counting process for the study of software science metrics.

L,

ot

—

It should be mentioned that a Software Science research group at
Purdue University has developed another COBOL analyzer (Shen and Dunsmore
80). The Purdue University analyzer is written in COBOL whereas the Ohio
State University (0SU) analyzer is written in PL/I. Both the analyzers are
capable of handling Data as well as Procedure divisions of a COBOL program,
as has been recommended by (Zweben & Fung 79). In addition, both programs
allow users the option of providing their own definition of COBOL operators
and operands. In particular, the 0SU analyzer offers the added feature of
context sensitive counting of various keywords, as will be discussed in

this report.

The next chapter describes the overall design of the 0SU analyzer,
and is intended for readers who may wish to study and/or modify the actual
programming details. Chapter 3 provides the details of how to use the
analyzer, either in "default™ mode using a predefined counting strategy, or
with user provided definition of COBOL operators and operands. A brief
discussion about the future work to be dome using this analyzer has been
outlined in Chapter 4. For completeness of the report, four appendices are
included. Appendix-A provides the explicit design document for the entire
analyzer program. A detailed description of the existing files related to
the analyzer is givenr in Appendix-B. In Appendix-C, a short procedure for
maintaining the analyzer is mentiomed. Finally, the procedure for invoking

Purdue”s analyzer at OSU has been explained in Appendix-D.

L]

CHAPTER 2

OVERVIEW OF Tii£ DESIGH OF THE CODOL

AIALYER

2.1: Program Structure

The strucure of the analyzer is based of the data stru

coken stream of a COB0L source program,

(using a Jackson design notation {Jackson, 75)):

Token %
sourcd
program
Reservgd
word

. Q
Noise-
word

Contef
free

cture of the

which can be pictured as follous

[Non- o]
reserved
word - .
o)
Operand Paragraph

Name

W

I~

lionreserved words are prograrmer defined syubols and in general all
nonreserved words except paragraph names are operands. Paragraph nanmes are
identified by their location (beginning in Col. 8) in a source language
statenent. Reserved words are language (compiler) defined symbols and they
are usually well documented in the language manual. llost COBOL reserved
words function as operators but some function as optional symbols to make
the sentence structure zore English like. 1In the usual counting strategy
of software science, these optional syubols are ignored and are thus called
noisewvords., Souwe operators are context sensitive zrnd additional actions
are needed to ldentify and process them. Since reserved vords can be

derined precisely with the help of a language wmanual, operands (nonreserved

words) of a given source program can be identified by checking zzalanst the

list of reserved words.

The analyzer can be viewed as having the following four Lajor poases.

@ o —)) @ . @, 3 ’ IO

INUTIAL12A~] —— -—— | BVILD Tokew

T T PROcESsIing - - -

il P S - <s._

TTSTATISTY

|

n

The data structures used as input/output to each of the phases are the

following.

1. Predefined operator and noiseword files.
2. List and Tree structures of operators/noisewords.
3. COBOL source program
(a) Tokeu list of the COBOL source program
(b) Operator/Operand tree for the data and procedure
divisions of the program.

4. Report of the Software Science metrics.

Initially, information about reserved words is used to build operator
and noiseword trees (module INITIAL & INITIA2). This information consists
of names of reserved words, alternative forms of these words (aynonyms),
and any context sensitive information concerning their use as operators.
The input character stream of the source program is then broken down into a
token stream (module BLDTKN & GETOKEN). Every token is first processed
againast the operator tree (module OPERATR & FILTER1). If it is not an
operator, or if the operator tree provides no synonym or context semsitive
information to determine how to deal with the token, it is processed
against the noiseword tree (module NOISE & FILTER2). If it turns out to be
none of the above, then the token is considered to be an operand and this
information is entered into the operand tree (module OPERAND & FILTER3).
After all the tokens are processed and the information concerning their
classification is built into the appropriate trees, a module STAT is

invoked to generate all the relevant statistics and the final output.

ir

S - ' T W

Note that two modules exist for each process other than the statistics
generation. One module performs the process for the DATA division and the

other performs the corresponding process for PROCEDURE division.

USSR ARARSRETAES o i

T

The program structure is best described by the following high level

routine (used in the program though details have been deleted here for
1 clarity).
|
INITIALIZE DATA STRUCTURES ; /* Call INITIAL and INITIA2 */

DO WHILE (=~ END OF PROGRAM);
CAPTURE A TOKEN ; /* Call GETCKEN or BLDTKN */
COMPARE THE TOKEN AGAINST THE DEFAULT OPERATOR TREE ; /* Call OPERATR or FILTERL
IF THE TOKEN IS AN OPERATOR
THEN
PROCESS THE TOKEN AS OPERATOR ;
ELSE

COMPARE THE TOKEN AGAINST THE NOISE TREE ; /* Call NOISE or FILTER2 */
IF THE TOKEN IS (- OPERATOR AND - NOISEWORD)

THEN
PROCESS THE TOKEN AS AN OPERAND ; /* Call OPERAND or FILTER3 x/
END ;
PRODUCE THE ANALYZER REPORT ; /* Call STAT */

A characterization of the ma >r data structures used by the program, a
structure chart, and a description of major modules are given in the

remaining sections.

41--i--llllllllllllllllllIlIlllIlllllllIll-llllllllIlllllIlllllllllllllllllllll“

2.2 Internal Data Structures

Functionally there are six linked list structures in this program.
One uses a binary tree structure, four use a linear list structure and the

remalning one uses a circuldr linked lilst structure.

Binary Search Trees

There are three important examples of the binary tree node structure

in the analyzer. These are the operator, ncise, and operand treces.

Operator tree

Noise tree

EJECT

3
14

Operand tree

Root2

o

SKIP2
THAN
SKIP1
Root3
MAR

DONA

BILL

«123

TIM

KATHY

COHEN

’ The nodes in a tree are related to each other i1n lexicographic order
! of the symbol with respect to the alphabet set used by the local computer

(e.g. EBCDIC). Each node contains information about the frequency

occurence of its token at the current point of the analysis (see the node
structure below). After the trees are completed it is a simple matter to

derive the software science measures ETAl, N1, ETA2, N2, and the frequency

distribution of the operators and operands (see STAT under Sectiom 2.4).

Structure of a node of the operator, noise, and operand trees

freq D]

counter %

V] 1
leftli{k | } \

assoclate .)
token pointer right link

pointer

In the analyzer the PL/1 declaration for this structure is:

DCL 01 TREENODE BASED (current),
02 LPTR POINTER,
02 RPTR POINTER,
02 ASSOCIATE POINTER,
02 TKNPRT POINTER,
02 FREQCNTR POINTER,
02 DLMFLAG: BIT (1);

In general, left-link and right-link help to define the tree
structure mentioned abcve; token pointer points to am internal list
structure of the token associated with the node (token list described
below); associate pointer leads to an associate list which contains
context sensitive information about the token, if there is any;
freq-counter contains the occurrence frequency of the token; and DLM

(delimiter) is a flag used for a variety of purposes, one of which is

to indicate whether a particular operator is a COBOL verb.

Token List

The tokens are represented internally by a linear list structure.
Each node contains two adjacent characters of a token. In general a
; token of length x requires (x/2+l) nodes for its internal
representation, and the token pointer of a tree node points to the

first node of this list.

token pointer

oyvl 4
__J__ next pointer
E{R| |y Ol9jply
%= next 1| — next J= =
pointer J- pointer
Synonym List

Synonymous tokens are linked up through the synonym pointer (3rd

field) in the first node of their token list.

token pointer

Associate List

The associate list is used to record context semsitive counting
strategy rules for COBOL keyword tokens. These rules are given as
"action pairs" in the input instruction list (see section 3.2 for the
syntax and semantics of action pairs). A token affecting a previous
token or being affected by a previous token has an associate list node
linked to its tree node. The structure of an associate list node is
similar to that of a tree node., If a token 1s sensitive to more than
one previous token, additional associate list nodes are linked through

the associate pointer field.

As an example, let us see how the data structure of an associate
list corresponds to the description of the context semsitive

relationship among the tokens “ERROR”, “ON” and “SIZE”.

OQur counting strategy suggests that in the context of “ON SIZE
ERROR”, “ON” and “SIZE” should be counted as noisewords, and the token
“ERROR” representing this string should be counted as an operator.
This can be expressed as the input instruction “ERROR > SIZE >> ON” in
the file OPERl (see section 3.2 for a discussion »f the syntax of
these input instructions). To implement this instruction (which is an
abbreviation of the two action pairs "ERROR > SIZE” and “ERROR >> ON7)

we build the associate list as follows.

ERROR > SIZE >> . ON
- 42| -

- j 1 -
/ DUR
Y |} J 15
\ SIZE
right
left pointer

pointer ZRROR

R

ks S

The leftmost node in this example is a tree node for the token
“ERROR” and has a frequency count of 15 (arbitrarily chosen). The
other two nodes in the example are not tiee nodes, but are members of
the associate list for the token “ERROR”. For the “SIZE” node, the 1
in the frequency field denotes that in the case of “ERROR” following
“SIZE” by one token, “SIZE” is considered as a noiseword (positive
value associate with >). The 2 in the frequency field of “ON” denotes

that in case of “ERROR” following “ON” by two tokens, “ON” should be

considered as the noiseword.

Historical List

This 1s a circular list which saves the last tem tokens for

backpatching the frequency count of any context sensitive token.

MOVE

COMPUTE READ

INPUT

Current pointer

hy YO P TN Py

i

Special Character List

fhis linear list links up all special break-characters which are
also considered as tokens., This list is consulted by every incoming
character of the source program. The second character field of the
token node contains a “$° or “?” depending on whether the character is
an operator or noiseword. This list built as the (user defined or
default) operator and noiseword files are read into the analyer.

Single character tokens from these files are special break characters.

Head_sngl

13

ol

-+

*AMINYOS PUB ‘QTELINI ‘NALLNYA ‘TIVAWOD ‘NILATId ‘IYASNI ‘HOUnS °8°@
8auyiInoiIqns sAfITuFid 88 24198 963Y] JO SWOS pPUB SIUTINOIqNE [RUIIIXD I8 83x0oq papeysun YTy :3J0N

BEZ 914
€7 314 PE'Z *814 ¢z 814 q¢°z 812 €z ‘314
lvlS ddLNNOY - [4aaLNNOD ZVILINI IVILINI
W94 LND

*19zAfeuy ay3z jo ainjoniis 1eINpPom 333[dmOd 33 moys sainByj BupmoroF Byl

I¥VhHy NNIJNYLIE :€°C

o

— ﬂ . e
!
' INITIAL
' INITELD SCRN kWD AcTroN

!
SCRNKWD
SURCH FREETKN INSERT
COMPARE COMPARE PRNT TN
Fig. 2.3b

Note: INITIA2 has the same structure and subroutines as INITIAL.

LM‘“ e

= d¢-z 314

[]
o —1 iNILNOYBAS
o [IVNBILNI
Nx) 333y La3asng HodNnS
33V WO
IvdWo NOIL 3334 Hoans é
(P FREYT
NAL3334 H2INnS

o Vi i
\\\q\k _\\ \N\N

|
1 Ued Wiad
dnlvysd 3sion 2RIV EX
7 o ;

\ \zm\ux
. o7 \\e_\k
_

qQILNNO)Y

¢ ————E SO ———— - ——

Thkzuﬂg #u#(& ZMUI—

|
TXF NH—
L

I SRR

AL 334

gd3IL iy

|

INlLNocAENS S -
AVN A3, N \k
33 Vd o9 o
B
‘\!Iouam 33vd W 0D
‘ |
T 244
AL 3334 Ho3ns | | mar33ad 3YHILTD
33VdW0D \\\\\\\
| 1
777
Hyans o\mu\m @o\:b\ \\\MW@ k._m\ﬁ\\
Z _ 7 \\%\\w

o

—wa.rq...;

Ty3aLiy

|

_

N1 Q%

il

r

_ dd LNNOD

R A T g

ERr o e o z 7 \\
m C:.ZgL «ckad INILNONE NS
L# TYN2 3 LNL

\\

ﬁ\\\ mm *\\R |
Noudd \B,Emw :z_

P
l],

[

7 NALLNId FIYdWOI JIVIwaY NAilNAd Id¥dw i
\\\

:o ma.oZ\

zZZ

| 2 335N
m%& — 3¢ EM HINS Wd\p\ W
|
=
\

o

L7 ¢ p&m\ , J243639
—‘hmommu #0_35&& LZ\EV \A

hatin it

2.4 Description of Major Modules*:

INITAL (INITIA2): Initializes the fundamental data structures needed for
analyzing the Procedure (Data) division of a COBOL program. In particular,
this module builds operator and noiseword trees according to the input
instructions supplied by user or the default file descriptions. It also

constructs the token, associate and synonym lists.

INITBLD: Captures a token from the input instruction stream and builds a

linked list structure for the token.

SCRNEWD: Screens the keyword (token) captured by INITBLD. If it is a new
member of the operator/moiseword tree them it is inserted into the
appropriate tree. Otherwise the linked list structure of the token is

freed.

ACTION: Processes the action pairs (see Sectiom 3.2) from ri:e inpur
instructions. These action pairs define synonyms and context sensitive

information.

COUNTDD (COUNTPD): Scans the Data (Procedure) division of a COBOL program.
Each occurrence of a token is classified on the basis of the counting
strategy defined in INITIA2 (INITIAL), and the frequency count of each

unique operator or operand is updated.

GETNBLK: Reads an input record of the COBOL source program starting from

column 8 and returns the first nonblank character in the record.

* A more thorough description of each module is contained in Appendix-A.

L en % e e WIS a— e oo

< ot i n X

s> o A

GETOKEN (BLDTOKEN): Scans the records in Data (Procedure) division of a

COBOL source program, and captures tokens from the input character stream.

It also builds the linked list structure for the tokens.

This routine is more powerful than INITBLD in that it can capture a -
literal string as a tokenr and it can determine the function of a variety of
break-characters. For example, *-" may be used as a hyphen or as the

subtraction operator, and ~.” may be treated as a decimal point in a real

number or as a delimiter.

OPERATR (FILTER1): Processes the incoming token in Data (Procedure)
division against the operator tree of Data (Procedure) division.

If a match is found in the operator tree then increments its
frequency count and frees the storage of the incoming token. Otherwise

passes the token to NOISE (FILTER2).

NOISE (FILTER2): <Checks the incoming token against the noiseword tree of
the Data (Procedure) division., If a match is realized in the noise tree
then frees the current token. Otherwise passes it down to next phase,

namely OPERAND (FILTER3).

OPERAND (FILTER3): The incoming token must be an operand by default. This
module searches the operand tree of Data (Procedure) division in order to
see if a match exists. If a match is found then increments the frequency
count of the current token and frees the token. Otherwise inserts the new

token into the operand tree of the Data (Procedure) division and updates

its frequency count.

‘i STAT: Produces a report of the analysis. STAT makes use of the operator \

aad the oﬁetand trees developed during the early stages. In traversing the
operator tree, the number of unique operators (ETAl) 1is obtained by
counting the tree nodes having nonzero frequency. The total number of
operands (N1) is found by adding up the values of all the frequency counter

fields. Similar treatment is followed for operand tree in order to find

the number of unique operands and also the total number of operands (i.e.
ETAZ and N2 respectively). This module also produces the frequency
distribution of all the operators and operands in different divisioas of a

COBOL program in a sorted order.

REORDER: Sorts the operator and operand trees of the Procedure divisiom as
well as the operator tree of the Data division in order of frequency
counts. It also provides information about ETAl, N1, ETAZ, N2 and the

number of statements in the appropriate division.

SOR78: This module is a slightly modified version of REORDER, and is used
to sort the operand tree of the Data division, In addition to the number
of unique operands and tbe total number of operands in the Data division,
it also calculates the number of common operands between the operand trees
of the Data and Procedure divisions. This number of common elements 1is
used to find the number of unique operands in the entire program, since the
number of unique operands in the whole program = (sum of the operands in
both Data and Procedure divisons) ~ (number of common operands between the

Data and Procedure divisions).

SOFTMET: Produces the final values of all Software Sclience metrics for

Data and Procedure divisions.

PRNTWID: This module generates separate files containing the frequency
distribution of all the tokens in both Data and Procedure division, The
file 1s broken down into 80 character records, and is composed of node
units. Each node unit corresponds to a token and consists of a 3-byte node
length, a 4-byte frequency count, and the token symbol of up to 256

characters.

REPORT: Reads three different files, namely, SYSUTO, SYSUTl and SYSUT2
generated by PRNTWID and STAT. SYSUTO, SYSUTl and SYSUT2 contain all
information from Data division, Procedure division and the program,
respectively, necessary for producing the desired output. It generates a
report of Software Science wmetrics. The frequency distribution of tokens
in Dat? .y Procedure divisions are displayed in parallel. Summary

accounts of Data division, Procedure division, and the entire program are

displayed at the end (see section 3.3).

CBAPTER 3

USE OF THE COBOL ANALYZER

In order to obtain Software Science measures, a set of unambiguous
rules which defines the partition of symbols into operators and operands in
a language is required. Different authors may come up with slightly
different rules for the same language, even if the same language compiler
is being used. The discrepancies are often due to disagreement of
interpretation of the definitions of operator and operand given in
(Halstead 77). An operand is defined as a "variable or constant™ in a
program. An operator is dafined as "a symbol or combination of symbols

that affect the value or ordering of an operand” in a program.

To allow for changes in the counting procedure by different users, the 0SU
analyzer allows the option of invoking a predefined set of rules or

defining a new set of rules. Section 3.1 describes the former option, and

Section 3.2 discusses the latter.

-

3.1 Default Mode

The counting strategy used in this analyzer considers entries in both

Data and Procedure Divisions. It is governmed by the following rules:

1. OPERANDS (Data and Procedure divisions).

Any reference to a distinct operand 18 counted as an occurrence

of that operand. An operand is any of the following:

a. A file-name, e.g., CARD-INPUT-FILE.

b. An identifier, e.g., EMPLOYEE-NUMBER,

c. A literal, e.g., “BILL” or 1234.

A paragraph name or section name is not considered as an
operand. Together with PERFORM or GO TO it is considered as an

operator.

2. OPFRATORS (Procedure Division).
Any reference to a distinct operator is counted as an

occurrence of that operator. An operator is any of the following:

a. A logical operator, e.g., OR, AND,

b. A relational operator, e.g., =, EQUAL, LESS THAN.

¢. An arithmetic operator, e.g.,+,-,%* and /.

d. A key word or required word in a valid COBOL statement with the
exception of GO TO, PERFORM, CALL and ALTER. Any group of keywords
functioning as an operator is counted as a single operator. Examples l

of such keywords or keyword combinations are: IF, ELSE, NEXT

SENTENCE, UNTIL, AT END, READ, and OPEN.

e. Noisewords are not considered as operators, and are ignored in
the counting,

f. A transfer of control: Any transfer of control to a paragraph
name, section name or subprogram name is counted an occurrence of the
operator associated with that name, e.g., GO TO paragraph-l, GO TO
paragraph-2, and PERFORM paragraph-l are all distinct operators.

g. A parenthesis pair e.g., A - (B - C) has ocne occurrence of the

operator denoted as “parenthesis pair”.

3. OPERATORS (Data Division).
All keywords/required words in a valid COBOL statement are
considered as operators e.g. FD, BLOCK, VALUE, REDEFINES, PICTURE

ete.

4., Each occurrence of a COBOL verb adds ome to the count of the

operator denoted as, “end of statement”.

5. Periods, commas and semi-colons are not counted.

Complete lists of the operators and moiscwords for both Data and
Procedure divisions, based on ANSI COBOL 1973 and including language
extensions from IBM 0S Version 4, are shown in appendix-B. The order of
the records is so as to create well balanced tree structures for the
analyzer (see Chapter 2 for details concerning these structures), with an

effort to put more frequently occurring entities near the root of the trece,

25

I

To run a job at Ohio State”s Instruction and Research Computer Center

(IRCC) using default mode, the following sequence of inputs is required:

//jobname JOB ...account number...
//PROCLIB DD DSN=TS0613.PROCLIB,DISP=SHR
/! EXEC OSUCNTPM

//SOURCE DD *

(source program)

[]
1/

The JCL file , OSUCNTPM, used to run the analyzer is listed 1iu
Appendix-B.

It should be noted that currently the students of different
COBOL courses at 0SU use WIDJET and WYLBUR on-line systems to run
their jobs on the AMDAHL 470. WIDJET and WYLBUR users utilize the
following set of JCL to run the analyzer.

// JOB

/*JOBPARM V=D

//PROCLIB DD DSN = TS0618.PROCLIB
// BXEC INTERNAL

/PROGRAM DD *

$JOB xxxxxx student-name

COBOL SOURCE PROGRAM

SENTRY
1/

Where xxxxxx correspouds to 2-digit LAB-ID and 4~ digit AUTHOR-ID.

v .

b

Unlike “OSUCNTPM”, this JCL allows the analyzer to gather outputs into
a separate disk file (see Appendix-C). The detailed structure of INTERAL

and other necessary JCL invoked by INTERNAL are given in Appendix-~B,

It i1s worth mentioning that recently an EXEC program has been
developed which allows students to ruun the analyzer more conveniently,
while keeping tae aunalyzer secure from student mod.”_.cation. The entire
EXEC program listing is also included in Appeucix-B for completeness.
Because of the present facility, the students n.ed to use only a simple
command (called ANALYZE) to run their program through the analyzer instead

of using the JCL given above.

3.2 User Defined Operators and Operands

It is also possible to run the analyzer with user defined operators
and operands. When using the analyzer in this mode three input files are

required. They are each discussed below.

Source Program

DDname: SOQURCE

This file contains the COBOL program to be analyzed. Each record is
80 bytes long and corresponds to a line of the source program. The size of
the source program is not limited by the analyzer but by the memory
available because operand storage is dynamically allocated and freed.

Currently only one source program can be analyzed in one execution.

Operator File

DDname:0PER

This file contains the definition of operator for the counting
strategy. Each record is 80 bytes long.

The syntax of an operator file is:

[.] keyword-1 [relation keyword-2].....

The period before keyword-l is optional. 1Its occurrence indicates
that keyword-1 should be considered as a COBOL verb. Since a COBOL
statement is delimited by the verb of the next statement, counting the
verbs of COBOL is an indirect way to count the number of statements in the

source program,

i‘\

Keyword~l is a symbol to be considered as an operator in the zounting
strategy. If keyword-l has been registered before, it is not registered
again,

The “relation keyword-2” pair is optional., Its presence indicates
that a certain action is to be performed in the context of keyword-1 and
keyword-2. Multiple action pairs signifies multiple actions on keyword-l.
The kind of action to take place is defined by the relation of the

instruction as follows:

=" means that keyword-2 is to be considered as a synonym of keyword-l.

They are to be treated as equivalent tokens in the counting strategy.

*>” means that on encountering keyword-l, if the most recent token is

keyword-2, keyword-2 is to be considered as a noiseword.

*<” means that oun encountering keyword-l, if the most recent token is

keyword-2, keyword-1l is to be considered as a noiseword.

*>>” means that om encountering keyword-l, if the second most recent token
is keyword-2, then keyword-2 is to be considered as a noiseword. Up to six
multiple *>° may be used, implying that backtracking by six operators 1is

possible.

“<<” means that on encountering keyword-l, if the second most recent token

is keyword-2, then keyword-l is to be considered as a noiseword. Up to six

multiple “<” may be used.

Ope easy way to recognize which keyword is to be considered as a
noiseword is to look at the “point” of the relation. The relational

operator always points at the noiseword.

e.g. Keyword-l >>>> keyword-2 << keyword-3

The first relation points at keyword-2; thus keyword-2 is to be
considered as a noiseword. But the second relation points at keyword-l;
thus in the context of keyword~l and keyword-3, keyword-l is to be
considered as a noiseword. Note that this input reccrd does not define any

relationship between keyword-2 and keyword-3.

By entering into the operation file a liast of relation ~ keyword
pairs, the user of this analyzer may define the operators and operands of

his counting strategy based on information obtained from the language

manual supplied by the vendor.

— — e ———— —————————~ -

ot

'f ’ Example 1

Different versions of a COBOL compiler may have different
repertoires of reserved words. The counting program used under different
COBOL compilers must reflect this variation through entries into the
operator file, For example, reserved words that begin with the letter b~

under two popular compilers have the following difference.

| 1974 ANSI COBOL 1973 IBM OS Versiom &4
| before basis

| blank before

i block beginning

E bottom blank

| by block

| bottom

| o

In switching from ANSI COBOL to the compiler for IBM Version &, two
keywords, “basis” and “beginning”, are to be added into the operator file,

That is, suppose the entries for reserved words that begin with the letter

— b=

“b” under a 1974 ANSI/COBOL compiler are (n cards existing before these

entrries):

Carzd
Card
Card
Card
Card

n+l
n+2
n+3
n+4
a+5

column

111111111

123456789012345678...

BEFORE
BLANK
BLOCK
BOTTOM
BY

—— e

Then the entries under a 1973 IBM 0S Version &4 compiler become:

111111111
column 123456789012345678. ..

i Card n+l BEFORE
‘ Card n+2 BLANK
! Card n+3 BLOCK

Card n+4 BOTTOM

Card a+5 BY

Card n+6 BASIS

Card n+7 BEGINNING

Example 2
According to the DEC-10 Version 4 COBOL compiler, the use of the

EXAMINE verb should follow the general format:

ALL
EXAMINE identifier TALLYING LEADING Literal-l

UNTIL FIRST
(REPLACING BY literal-2]

Underlined capitalized words are considered as keywords. Capitalized
words which are not inderlined are considered noisewords. To define
lexical units according to the above general format the following cards are

entered into the operator file.

+EXAMINE
ALL < TALLYING
FIRST < UNTIL

BY < REPLACING

Ry TP ROt NN

The period before “EXAMINE” instructs the analyzer to consider every
occurrence of “EXAMINE” as an occurrence of an operator as well as an

occurrence of the operator ~ end of statement”.

“ALL < TALLYING® instructs the analyzer to comsider “ALL” as a
noiseword if its preceding word is “TALLYING”; otherwise both “ALL” and

“TALLYING” are to be considered as operators.

“LEADING” instructs the analyzer to regiaster “LEADING” as an operator.
However, since there is no period preceding it, no occurrence of the “end

of statement” operator is registered.

“FIRST < UNTIL” and “BY < REPLACING” are instructions which enable the

keyword pointed at to be considered as operator or noiseword according to

context, similar to “ALL < TALLYING”.

Example 3

According to the following general format,

CORRESPOND ING
ADD Identifier—-1 TO identifier-2
CORR

(ROUNDED] [ON SIZE ERROR imperative-statement)

the operator file should include the following cards:

-ADD

CORRESPONDING = CORR
TO

ROUNDED

ERROR > SIZE >> ON

The period before “ADD” is to instruct the analyzer to register “ADD”
as 8 COBOL verb. Thus every occurrence of “ADD” increments the count of

both “ADD” and “end of statement”.

“CORRESPONDING = CORR” instructs the analyzer to comsider

“CORRESPONDING” and “CORR” as equivalent tokens.

“TO” and “ROUNDED” instructs the analyzer to register these two

symbols as operators.

“ERROR > SIZE >> ON” imstructs the analyzer to ignore “SIZE” if on

encountering “ERROR” the most recent token is “SIZE”, and to ignore “ON” if

on encountering “ERROR” its second most recent token is “ON”.

Noiseword file

DDname :NOISE

This file contains all the individual noisewords which are not
considered as operators or operands at any time during the analysis. Each
individual noiseword is placed on a separate input record (80 bytes long).
Some noisewords are sensitive to context and are considered as operators
only in certain situations. For example, “TO” is a noiseword in “EQUAL TO”
but is an operator in “MOVE X TO Y.” Informatiom of this kind should be
supplied by the user to the operator file (see above examples). The
noiseword file only contains symbols which are always considered to be
noisewords. This set of “true” noisewords has to be determined before
analysis in order to define the operands of the counting strategy. Any

token which is not contained in the operator file or the noiseword file

will be categorized as an operand,

The following is the JCL required to run the analyzer at Ohio State

University”s Instruction and Research Computer Center if user defined

operators and operands are employed:

//jobname JOB ...account number...

/1 EXEC PGM=0SUCNTPM

//STEPLIB DD DSN=TS0618.LOADLIB,DISP=SHR
//OPER DD*

-

(operator file)
je
//ROISE DD*

(noiseword file)
v
//SOURCE DD*
(source program)
I
//SYSPRINT DD SYSOUT=A
!l

3.3 Output of the Analyzer

The following outputs are generated by the analyzer:

- Echoes of the operator file and noiseword file
- List of tokens scanned during the analysis
- Frequency distribution of operators and operands
-~ Number of unique operators (ETAl)
- Number of operator occurrences (N1)
- Number of unique operands (ETA2)
-~ Number of operand occurrences (N2)
- Vocabulary (ETA)
- Program Length (N)
- Estimated program Length (NH)
- Total Number of Statements (NOS)
Program Volume (V)
- Program Level (LH)
- Language Level (LAMBDA)
- Intelligence Content (INTELL)
- Programming Effort (EFFORT)
A sample of the actual output format produced by the analyzer for the

irequency distributions and metrics sumaary follows.

38

GLLSTY 8891 8L°C (810°0 196¢ 881 0191 BIOI ¢6¢T 9Z¢ (81 6% 8¢ WVd90dd
L1296 %16 89°¢ £0%0°0 8927 9 %66 ove 701 1€T v/ 807 8¢ NOISIAIQ D0¥d
G789¢ 1°29% £€9°1¥% 1060°0 8ZI¢ €21 €9€T 819 881 S6¢€ 8L1 Y82 o1 NOISIA1Q VIVA
odd3 T13LNI VAgWVT H1 A SON HN N vid ZN V13 1IN 1v.id
1S <0
A q400 4 -4ALNTEd Y or1
6 3 43 431114
1 L 1 €1 SIIVIS
9 F114-31vAdn { so¥dZ
€ IV14-103 1 RNN-HSVH
1 OML-3INT1T 1 ANIT-1S414
l 1 ANTYA-HSVH 1 IvVI14-401
1 JON, 1 66°655$8$
ONINOTA ANVYIJ0 NOISIATA@ TINAAIOEd PR ENUERE] ANVY3d0 NOISTIAIQ Viva
S9 /*S0dx/
4 9¢ oL 0s1 .
97 AAOW 1A | J1d * F4NLO1d
Al CARE L] Gy A0TVA

NAdO GYVANVLS
480D A0014

AONANHTAA YOLVIAJO NOISTATA FANAAINEJ JRITENUERES Y0IVYId0 NOISIAIA Viva

£8/91/10 ¢ 4LVd
0L%0 ¢ (1-OHLNV
0 ¢ dI-WVdd0odd

190479 SOTYIAW AINATIDS TIVMIIOS

—

CHAPTER 4

o smeazs

; The present form of the analyzer herein, developed by the scftware metrics
% } research group at Ohio State University, handles operators and operands in
both Data and Procedure divisions of a COBOL program. The availability of
this analyzer makes it possible to collect a substantial amount of data
from various sources of COBOL programs. These data will provide the

f opportunity for more extemsive and critical analysis of the Software

| Science metrics, and their applicability to such important areas as

programming time prediction and error prediction.

A i i

REFERENCES

(Halstead 77] Halstead, M.H., Elements of Software Science, North Holland,

N.Y., 1977.

[Halstead 79] Halstead, M.H., "Advances in Software Science”, in Advances

in Computers, M.C. Yovits, Academic Press, New York, 1979.

[Jackson 75] Jackson, M., Principles of Program Design, Academic Press,

1975.

[Shen and Dunsmore 80] Shen, V., and Dunsmore, H., "A Software Science
Analysis of COBOL Programs™, Technical Report CSD-TR-348, Dept. of Computer

Sciences, Purdue University, August 1980.

(Zweben and Fung 79] Zweben, S.H. and Fung, K.C., "Exploring Software
Science Relations in COBOL and APL™, Proceedings of COMPSAC 79, Chicago,

I11., Nov. 1979, 702-707.

40

R 7 P v,

APPENDIX-A

DESIGN DOCUMENT

This appendix provides the explicit descriptiom of each individual
module in the analyzer program. Included for each module is a detailed
functional description (with a list of subprocesses) and its interfaces

with the other modules in the program.

oy

A

Maip Modyle: CNTPGM
Functiona]l Description:

This is the control module of the analyzer.

Subprocesses:

1. Initialize history list, namely six different tree roots.

2. Define the counting strategy for both data and procedure divisions

(INITIA2, INITIAL).

3. Get author~ID and program—ID if the program is to be rum for data

collection.
4, Count data division (COUNTDD).
5. Count procedure divisiom (COUNTPD).

6. Compute software metrics and print a report (STAT).

Interface:

CNT PGM

NITIAL L\NPHM- CocUNTDD

CeUNT PD

STAT 7

L

-

.

7.

8.

IN
1. TOP-1 : Top of the operator tree for Procedure division (PD)
2. TOP=2 : Top of the noise tree for PD.
3. TOP-3 : Top of the operand tree for PD.
4, TOP=-6 : Top of the operator tree for data divisiom (DD).
5. TOP=-7 : Top of the noise tree for DD.
6. TOP-8 : Top of the operand tree for DD.
10. Final report of the analysis.
CIRPTR : Pointer to last token of the circular list.

LAB-ID : 2-digit Lab-ID.

9. AUTE-ID : 4~digit author-ID.

Module : INITIAL

Functional description:

Keywords and actiomn pairs in the operator (OPER) and Noise (NOISE)

files define the counting strategy of the Procedure division. This

subprogram translates the counting strategy into operator and noiseword

trees which will be used in the subsequent analysis.

Subprocesses:

1. Capture a keyword from the input record of OPER file and put into a list

structure (INITBLD).

2. Examine the operator tree and determine if the keyword has been linked

into the tree.

into the tree (SCRNKWD).

If it is not already present, the new keyword is inserted

e IS TN

P SO P AV S

—— e

3. Process each action pair after the keyword. This process involves
capturing the relationship symbol and the associated keyword, and
constructing the associate list that implements the relationships between

two keywords (ACTION).

4. Repeat the above staps with NOISR file.

Interface:
CNTPLM i
N R
{NITT1AL
. o 3
Arj;” 1 <™ £ <
2.
&T / \
iNIT R L
> SCRN kwD
ACTION
ouT IN
l. 1. TOP : Root of a given tree (QOperator or Noiseword tree for PD).
2. 2. TRIAL-PTR : Address of the linked-list structure of the

captured keyword/nmoiseword
3. SCRNRWD : Returned tree node of the screened keyword/noiseword
4. NEXT-CARD : Current input line image

5. CURSOR : Pointer to the curreunt character in NEXT-CARD

) ' Module: INITIA2
i Functiona] Description:

This subprogram constructs the fundamental data structure needed to
process the data division of a COBOL program. Imn particular, it translates
the appropriate counting strategy into operator and noise trees for

analyzing the data division.

INITIA2 .as exactly similar structural and functional organization as
INITIAL with the exception that INITIA2 uses the operator and Noise files
for data division vhereas INITIAL uses the operator and Noise files for

Procedure divisions (see Appendix-B]. The detail module decription for

INITIA2 is omitted in order to avoid repetition.

Module : INITBLD

Functional Description:

This subprogram picks up a token from the input instruction record

and constructs a linked list structure for that token. :

Subprocess:

]
f
!
{ l. Assemble a token string by collecting ome character at a time until a
! blank at end of card is reached.

|

f 2. Transform the token string into a linked list structure.

3. Return the address of the linked list structure.

Interface:
INITIAL
ACTienN
c*’é\ v
INITRLD
OUT Y

1. NEXT-CARD : Current input line image
2. CURSOR : Pointer to the current character in next~card.

3. TRIAL-PTR : Address of the linked list structure of the captured

keyvord/noisevord.

' Module: SCRNKWD
’ Functional Descriptionm:

This subprogram determines if the given keywvord/noiseword captured by
INITBILD is a new member or not. If it is an old member, the storage of the

given keyword/noiseword is freed; otherwise it is inserted into the tree.

Subprocesses:

7. l. Traverse the appropriate tree to determine if a match in the tree can be

found for the given keyword/noiseword (SURCH).

2. If a match exists, the storage of the keyword/noiseword is freed

(FREETKN).
3. If a match cannot be found, the new keyword/noiseword is linked into the

tree (INSERT).

Interface:
INUTTIAL ACTI\ON
ov ////
é; \9\ \“J
N Za
SCRNKWD
E \»q' o~ |
] %
k) >
» ZANEE
SUReH FREETKN INSERT

ouT IN
1. 1. TOP : Root of a given tree
2. 2. TRIAL-PTR : Address to the linked list structure of

the keyword/noiseword.

3. SURCH : returned tree node of the matched keyword/
noigeword or "null".

4. SAVE : tree node of the insertion

S. SCRNKWD : returned tree node of the screened keyword/moiseword.

Module: ACTION

Functional Description:
This subprogram captures the relationship symbol (e.g. >>,~, <) and
the associated keyword of the action pairs. It also contructs the

associate-list that implements the relatiomnship between the keywords.

Subprocesses:

l. Capturé the first character of the relationship symbol.

2. If the first character is a "=, process the next keyword as a synonoym
through the synonym list.

3. If the first character is a ~>“, process the next keyword as a context
sensitive element through the associate-list.

4. 1f the first character is a “<“, process the next keyword as a countext

sensitive element through the associate~list.

4

i Interface:

‘ INITIAL
s+
| vit
ACTI(oN
3
>
o
INITRLD
ouT IN
1. 1. TOP: Root of the operator/moise tree.

2. TRIAL-PTR: Address of first keyword im the list
structure.
3. 3. INITBLD: Returned address to list structure of the
associated keyword.
4. SCENKWD: Returned treenode of the screemed keyword/moiseword.
5. NEXT-CARD: Current input line image

6. CURSOR: Pointer to the current character in NEXT-CARD

Module: SURCH
Functional Descriptiom:

This subprogram searches a binary tree by comparing the token
character string associated with each node of the tree until a match is

found or end of search is encountered.

Subprocesses:

l. Compare the given character string with the string associated with the
tree nodes.

2. If both the strings are equal, return the address of the tree node.

J. If the given string is larger, access the tree node on the left.

4. If the given string is smallex, ac;ens the node on the right.

5. Repeat the above steps until a match or end of search is encountered.

Interface:

SCRNKWD | |OPERATR NCisSE

CPERAND F(LTERIJ FuwTerR2||FiLTERY SORTS

51
our IN
1. TOP: Root of a given tree
2. 2. TRIAL-PTR: Address of the given token list.
5. COMPARE: Returned the result of comparison.
3. SURCH: Returned address of the tree node that matches or trial-pointer.

4, HELP: The address of the tree node to be compared.

Module: INSERT

Functional Description:

This subprogram inserts a new token into the given tree,

Subprocesses:

1. Compare the given token string with the character string associated with
the tree node (COMPARE).

2. Insert the new token in the tree.

Interface:

SCR N KwDd OPE RAND [E;LTER;]

L4)
cCeMmPARE
PRNTTkn

ouUT IN

1. TOP: Root of a given tree.
2. 2. TOKEN: Pointer to the current token list.

4. COMPARE: Returmed result of comparison. .
3. HELP: Pointer to the tree node to be compared.

5. SAVE: Tree node address of insertion

Module: COMPARE
Functional Description:

This subprogram compares the character string contained in two given
token list structures. It returns “GT” if the first character string is
lexically of higher order than the second ome. It returns “EQ” if they are
equal and returns “LT” if the first string is of lower order tham the

second omne.

Interface:
SURQH INSER T twse:a‘rz_i
s e
Com PARE
oUT N

1. PTR-1: Pointer address to first character string
2, PTR-2: Pointer address to second character string.

3. COMPARE: returned result of comparison.

Module: FREETRN
fupctional eion:

This subprogram frees the storags occupied by the token list wvbhen the

pointer to that particular list is knownm.

Intexface:

lSCRNKND CUTOKEN|{OPERATR|| NNJOISE CPERAND

KILTER:

FILTER 2 ”o‘:n.rs.z 3

N
«
«—

FREE TN

m
l. START: Pointer to the token list to be freed.

e

'-...........---------------------------------—---u-----ll-l-—--—---J-w------------ﬂlil--_--'-'r

Module: COUNTDD
Functiounal Description:
This module scans the Data division of a COBOL program. Each
occurrence of a token is classified oo the basis of the counting strategy
defined in INITIA2, and the frequency counts of each unique operator and

operand is updated.

Subprocesses:

1. Capture a token from the input string (GETOKEN)

2. The current token is compared with the elements of the operator tree. If
a match is found, then the current token is processed as anm operator
(OPERATR). Otherwise the token is passed to step3.

3. The incoming token is comparea with the entries of the noise tree. If an
identical token exists in this tree, the current tok;n is processed as a
noiseword (NOISE); otherwise the token is passed into stepé.

4. In this stage, the current token is treated as an operand and processes
accordingly (OPERAND).

S. Stepl thru step4 are repeated until the end of the Data divisiom.

Interface:

CN T PGEM

«.3,3,4
> 1,3

GETOKEN OQPERATR

OPERAND

hepror

35
ouT IN
1. 1. TOP-6 : Root of the Operator tree for DD
2. 2. TOP-7 : Root of the Hoise tree for DD
3. 3. TOP-8 : Root of the Operand tree for DD

4. CIRPTR : Pointer to the entry of history list
5. 5. TOKEN : Pointer to the current token list
6. RETURN-FLAG : Flag returned by OPERATR or HOISE
7. WEXT-CARD : Current input line image
8. CURSOR : Index to current character in NEXT-CARD
9. BUFF~CHAR : Buffer for the current token string in process

10. BUFF-PTR : Index to current character in buffer

-——

Module: GETOKEN
Functional Description:

1. Pind the first nonblank character of a tokea.

2. Capture all the adjacent characters starting with the first character

until a blank 18 encountered.

3, If the last character of the string collected in step2 is a period, then

ignore that perioq.
4, Generate a linked list structure for tbis new token.

5. Repeat stepl through step4 for the entire Data division.

Interface:

LfTD\JNIT'D])

L o "2I’I#

92
T

GETOKEN

PN

é‘\\

CETNBLK GETCHAR
CUTOKEN

oUT N
L. 1. NEXT~-CARD : Current input line image
Z. 2. CURSOR : Pointer to current character in NEXT-CARD.
3. 3. BUFF~CHAR : Buffer for current token string.
4. 4, BUFF~PTR : Pointer to current character in buffer.
5. 5. RAR : Current character in process.
6. 6. TOKEN : Pointer to tokem list.

--------....----"'""'--lh------——

RECEDE

57
' Module: GETNBIX
‘ Functiounal Description:

This module finds the first nonblank character in an input record,

Subprocesses:
1. Check every character of the input string (starting from column 8 of the
input record) uantil the first nonblank character is encountered.

2. Beturn the current nomblank character.

Interface:

GETOKEN

GETNRLK

«(1-4)
2{i-3)

GETCOHAR
ouT IN
l. 1. NEXT~CARD : Current input line image
2. 2. CURSOR : Pointer ta current character in NEXT-CARD.
3. 3. BUFF-CHAR : Buffer for current token string.
‘ 4. 4, BUFF~PTR : Pointer to current character in buffer.
5. 5. KAR : Current character in process.

--n--m---------:a-nngnn-—-t# -

— T e

SIS NN

Modyle: GETCHAR

u i escription; 1
This module returns tha next relevant character in the input

character stream. Characters in comments and labels, characters before

q»
o

column 8 and after column 72 are considered irrelevent.

Subprocesses:

1. Increment cursor by l.

2. Read in another card when cursor is equal to 73.
3. Skip comments.

4. Skip labels.

5. Return the character to buffer and check for the overflow of the buffer.

Iaterface:
GETN ALk
GETokEN BLD TkN
4\//////
(WP
e

A
ouT IN
1. 1. NEXI-CAna: Current input line image.
2. 2. CURSOR: Pointer to the current character in NEXT-CARD.
3. 3. BUFFER: Buffer for the current token string (may be partial).
4, 4. BUFF~PTR: Pointer to the last character of the token string in

buffer.

5. 5. KAR: Current character in process.

e

Module: CUTOKEN
Functiona] Description:

This module constructs a linked-list structure of a particular token
contained in the buffer area. Each node of the linked list contains only

two adjacent characters of the token.

Subprocesses:

1. Allocate a node and initialize all fields in the node. Pointer to this
node is returned to the calling module.

2. Fill up the node with first two characters of the buffer area.

3. Stepl and Step2 are repeated until all characters of the buffer are
included in the list.

4, Empty the buffer area.

Interface:
GETOKEN
BLD TkN
&
'\:\ (\’w -
CVT OKEN
Y
3
F REE Tk wn
ouT IN

1. BUFFER: Buffer for the currently captured token string.
2. BUFF-PTR: Pointer to the last character of the above token
string.
3. TOKEN: Pointer to the token list comstructed.
4. HELP: A temporary pointer which helps to hold the address of the last

node in construction of the list.

Module: RECEDE

Functional Desggription:

In processing a character string, it becomes necessary to look ahead
one or more characters. This module enables look ahead by providing a
mechanism to recover the last character(s), if necessary, in the input

string.

Subprocesses:

1. Decrement cursor by l.

2. Decrement buffer pointer (BUFF-PTR) by 1.

Incerfaces:

GE ToKEN BLD Tkn

REQCEDE

0oUT IN
1. 1. CURSOR: Pointer to the current character in input string.
2. 2. BUFF-PTR: Pointer to the last character of the token string in

buffer.

4

Module: OPERATR !
' Functional Description: 1
This function subroutine returns "true" if a match of the current]

token exists in the operator tree; otherwise returns "false".

i Subprocesses:

l. Search the operator tree and determine if the current token is an
operator by comparing the current token with the members of the operator

tree.

2. If the token is an operator, then increase the frequency counts of the

token by 1 and free the incoming token list structure since only ome

version of the same token list is needed. 1
3..1If the token is not an operator, return "false".
Interface:
COUNTD)
[y ¢
RIS
(1
OPERATR
2
\
=73 <\\\2?:;\\\‘
SURCH FREE TKN
ouT IN
1. l. TOP-6 : Root of the operator tree for DD
2, 2. TOKEN : Pointer to token list in process

3. SURCR : Returmed tree node address of the matched token or
"aull".
4. RETURN-FLAG : Flag containing 1 or 0 depending on whether the current

token exists in the operator tree or not.

Module: NOISE
uncti Description:
This function subroutine returns "true" if the current token is found
to be a noiseword. Otherwise it returns "false". Ncisewords are ignored

in the present analysis.

Subprocesses:

1. Search the noise tree to find whether the current token is a noiseword,
by comparing the token with each member of the noise tree.

2. If the token is found to be a noiseword them return "true" and free the

current token list; otherwise return "false".

Interface:
CCUNT DD
o
-
$1t
NOLISE
3
K\) 5
N
SURCH
RREE TKN
0UT N
1. 1. TOP-7 : Root of the noise tree for DD
Z. 2. TOKEN : Pointer to current token list

3. SURCH : Returned tree node address of the matched token or

4, RETUBRN-FLAG : Flag containing "true" or "false", returned by NOISE.

@

Module: OPERAND
Functiona] Description:

This module treats every incoming token as an operand. It searches

the operand tree and inserts the incoming token into the tree omly if it is

a newv member.

f Subprocesses:
l. Search the operand tree and compare the incoming or current token with

the members of the tree.

2. If the current token is found to be a new member, then insert this token

into the operand tree and update the frequency count.

3. If the token already exists in the operand tree, then free the token

lisc and increase the frequency count of the existing member by 1.

Interface:

CCUNT D)

ol

¢y

($18)

——— NNt —
64
oUT IN
1. 1. TOP-8 : Root of the operand tree for DD
2. 2. TOKEN : Pointer to current token list.

3. SURCH : Returned tree node address of the matchedf token or
"NULL". |

4. SAVE : Tree node address of insertionm.

Module: COUNTPD

Functional Description:

It scans the procedure division of a COBOL program. Each occurrence
of a token is classified according to a counting strategy defined in
INITIAL and the frequency count of each unique operator, noiseword, or

operand is updated.

Subprocesses:
1. Capture a token from the input (BLDTKN)

2. The token is compared with entries in the operator tree. If a match is
found, the token is processed as an operator (FILTERl). Otherwise continue
to the next satep.

3. The token is compared with entries in the noise tree. If a match is
found, the token is processed as a noiseword (FILTER2). Otherwise proceed
to the next step.

4. The token is processed as operand (FILTER]).

5. Repeat the above process until end of program

4@

Interface: 0>
CNTPGEM
Y
:\ -
- =
|t
CCUNT PD
W
A}
2
:
L?LDTRN
ouT N
1. 1. TOP-1 : Root of the operator tree for Procedure division
2. 2. TOP-2 : Root of the noiseword tree for Procedure division
3. 3. TOP-3 : Root of the operand tree for Procedure division
4, 4. CIRPTR : Pointer to entry of the history list
6. 6. TOP-8 : Root of the operand tree for DD
7. DONE-FLAG : Flag returned by Filter 1 or Filter 2
5. TORKEN : Resultant pointer to the token list by BLDTKN

ol

Module: BLDTKN
Functional Description:

It scans the source program input stream and captures the next token
on the basis of a set of delimeters (e.g. blank, period, comma,*,+,-,/

etc.) defined in the COBOL language.

Subprocesses:

1. If the first nonblank character of a potential token string is a period,

comma, or right parenthesis, then skip the character.

2. Capture “*° and “¥*”

3. Capture /7, 4+, =7, %>7 %<7 =7 2 (7

4. Capture literals enclpsed by quotes (subroutine LITERAL)

5. Capture character strings delimited om the right by blank, “*7,%/7 “+°,
>, e N (5,0, N, %, Y, and T-°, Embedding T.” or - is allowed.

6. Character strings of “CALL”, PERFORM’, ALTER”,“G"” and “NOTE” are

processed separately by the subroutine named CALL-IT, PERFORM, ALTER, GOTO

and NOTE respectively.

Interfaces:

GETNR LK |

LC"ETC"“‘:] CUTCKEN
RECEDEV]

66

ouT IN

l. TOP-1 : operator tree for new insertion of operator

2. 2. TOKEN : pointer to token list

3. 3. CURSOR : index to current character in NEXT-CARD

4. 4. NEXT-CARD : current input line image

5. 5. BUFFER : Buffer for current token string in process
6. 6. BUFFER-PTR : Index to current character in Buffer
7. 7. KAR : current character

8. CIRPTR : Pointer to entry of the history list

Module: FILTERL

Functional Description:

This function subroutine returns "true" and updates the frequency
count of a token captured by BLDTKN if a match is found in the operator

tree. Otherwise it returns "false" for passage of the token to FILTER2.

Subprocesses:

l. Search the operator tree to determine if the token is an operator. If
it is not an operator then exit this function and return "false".
Otherwise process the tokenr according to the following steps.

2, Increase the frequency count of this token by one, and free the incoming
token list structure since only one version of the same token list is
needed.

3. If the token found is potentially semsitive to past tokems, the history
list containing the past tem operators should be examined. If indeed the
token can affect a past token or be affected by a past token, appropriate
action should be taken to address this situation.

4. Update the history list for the new token.

5. Return “true” to COUNTPD.

e

i
|
i
i

Interface:

i
COUNTPD
f
i o
V|t
FILTER {
.
\)
& _"w >
ol ~
SURC
H FREETKN

ouUT IN
g 1. 1. TOP-1 : Root of the operator tree

2. 2. TOKEN : Pointer to tokem list in process

4. SURCH : Returned tree node address of the matched tokem or
“null” for nom-match

3. FILTER]l : Returned “true” or “false” for “confirmed operator” or

“confirmed non-operator”.
I

08

Y athd _‘...ﬁ' C ..‘.< -

OU

Functional Description:

This function subroutine returns "true™ if a match is found in the

|
l Module: FILTER2
|

noise tree. Since keeping counts of noisewords serves no purpose for the

present analysis, noisewords are not counted.

Subprocess:

' 1. Search the noise tree to determine if current token is a noiseword. If

! it is then free the token and return "true". Otherwise return "false".

Interfaces:

CCUNT PD
3
e
|t
FILTERL
3
\»
w
P
S \
SVRcCcH
FREE TknN
ouT IN
1. 1. TOP=-2 : Root of the noise tree
2. 2. TOKEN : Pointer to token list in process

4, SURCH : Returned tree node address of the matched token or

“null” for non-match.

3. FILTER2 : Returned "true" or "false" for coufirmed noiseword or

confirmed nonnoiseword

Module: FILTER3
Functional Descriptionmn: ‘
It treats every incoming token as an operand. Most operands have

been defined in the operand tree for the Data division. Therefore the DD

operand tree is searched first to avoid duplicate representation of a

unique token. The PD operand tree is searched next and only new operands '

are inserted into this tree.

Subprocesses: i

1. Search the DD Operand tree to determine if the token has been declared 1
in Data division. If it is, free the token list and use the one already in
use.

2. Search the PD operand tree to determinme if the token is already in the
tree or not. If it is not, insert the token into the tree.

3. Increase the frequency count by 1.

Interface:

CoUN T PD

«1,%,3

FiLTery

z 1
ad Wr

SURCH I‘NSERT FREETKN

5

N

p—
L]

1. TOP=3 : Root of the operand tree

[]
.

2. TOKEN : Pointer to tokenm list
3. TOP-8: Root of the operand tree for DD.
4. SURCH: Returned tree node address or "null" for ummatched token.

5. SAVE: Tree node address of insertionm.

Module: STAT
Functiona] Description:

This module produces readable printouts for all the parameters of

software scienca.

Subprocesses:

1. Sort the operator and operand trees of both data and procedure divisions
so that the tokens are arranged in order of frequency counts. Also
calculate the number of unique operators/operands and the total number of
operators/operands during the sort process (REORDER and SORT8)

2. Compute the values of all software science metrics (SOFIMET)

3. Generate seperate files containing the detailed information (e.g.
frequency distribution of all tokens, summary record for each division) for
data and procedure diviaion;, as vell as for the whole program (PRNTWID)

4. Use the files generated in step 3 to priant out the appropriate report

(REPORT)

Interface:

CNT PGM

REORDER

. | Eit PORT

ket)

»

TOP-6: Root of DD operator tree.

TOP-1: Root of PD operator tree.

TOP-3: Root of PD operand tree.

TOP-8: Root of DD operand tree.

Lab-ID: 2-digit Lab-ID (required only for student”s job)
AUTHOR~ID: 4~digit author ID (required only for students” job)
TOP-9: Root of the frequency tree of DD operator

TOP-4: Root of the frequency tree of PD operator.

9. 9. TOP-5: Root of the frequency tree of PD operand
10. 10. UNIQUE: Number of unique operators/operand
11, 11. OCCURRENCE: total number of operators/operands.
12, 12. EOS: Number of statements in data/procedure division
13. 13. TOP-10: Root of the frequency tree of DD operand.
14, ETA2-INTERSECT: Common elements between DD and PD operand trees
15, N: Program length -
16, ETA: Vocabulary
17. NH: Estimated program length
18. V: Program volume Software Science
19. LB: Program level Metrics

20. LAMBDAH: Language level

21. INTELL: Intelligence content

22.

EFFORT: Programming effort

——

23. 23, SYSUTO: File containing summary record and frequency counts of

24. 24,
26. 26.
25. SYSUT2

Data division.

SYSUTI: File containing aunﬁary record and frequency counts of
Procedure division.

FINAL output of the Analyzer

: File containing the summary record for the whole program

—

Module: REORDER

Functional Description:

This module sorts (according to frequency counts) the operator tree

and the operahd tree of the procedure division as well as the operator tree
of the data division. It also finds the number of unique operators
(operands) and total number of operators (operands) while sorting the

tTees,

Subprocess:

l.Traverse the operator/operand trees using a postorder traversal algorithm
2. The visited node is pruned from the original tree and is inserted into
the frequency tree, in which all the tokens are arranged in sequential

order of frequency.

Interface:
STAT
—
B
-t
VK
REORDER
—“{ N
kS
INSERT2
oot IN
L. 1. ROOT: Root of the given tree
2. 2. FREQ-TOP: Root of the frequency tree

3. UNIQUE : # of unique operators/operands

4. OCCURENCE: tota! # of operators/operands

5. EOS: # of statement in Data division/Procedure division

F

| Module: INSERT2
Functional Description:

This module inserts the tree node carried by ‘root” into the
frequency tree topped by ‘Freq-top”. The insertion procedure of this
routine differs from that of INSERT in the following ways.

(a) The sort key is the frequency count and then the character string of

the token.

(b) The inserted unit is a tree node instead of token pointer.
(c¢) No storage allocation is needed. In other words, building the

frequency tree does not require extra storage.

Subprocesses:

l. Use the root of the original tree ss the top of the frequency tree.

2. If the frequency count of the next vistited node is gregter than the
frequency count of the frequency top, go to the right and insert the
current node into the frequency tree if right pointer is null.

3. If the frequency count of the next visited node is less than that of the
frequency top then go to the left node. If the left pointer is null then
insert the current node into the frequency tree.

4. If the frequency count of the next visited node is equal to the
frequency count of the frequency top, then insert the current node

depending on the lexical order of the token strings.

' In ac
RE CRDER SORTS®
a \
y v
NN Y
INWNSERT L
£
N
PRNTT;{N
| oUT C N

1. ROOT: Root of a given tree.
5. COMPARE: Returned the result of comparison
between the token strings.
2. FREQ~-TOP : Root of the frequency tree

3. HELPl : Pointer to character string 1

4. HELP2 : Pointer to character string 2

Module: SORTS

. 10 intion:

This module sorts the operand tree of the Data division. It also
finds the total mumber of common operands between the Data and Procedure

divisions.

Subprocesses:

1. For each token in the DD operand tree, search the operand tree of the
procedure division to find if the current token of the DD operand tree also
exists in the operand tree of the Procedure division.

2. If the current DD operand also exists in the operand tree of the
Procedure division, then the number of common tokens is incremented by 1.
3. Stepl and Step2 are carried out for all the tokens in the DD operand
tree.

4, Sort the DD operand tree using the same procedure as the REORDER

routine.

Interface:

STA-T
[
o |
2
[
SCRTSE
0 »
Ve
“ " N

INSERT2

.
Bl s ot o MRl 4 i .

~d4

~dJ

ouUT N

1. 1. TOP-8 : Root of the operand tree of DD
2. 2. TOP-3 : Root of the operand tree of PD
4. SURCH : Returned address of the matched tree

node or “mull”
5. 5. TOP~10 : Root of the frequency tree of DD

operand
3. TENPTR : Pointer to current token in DD operand tree
6. ET.2-INTERSECT : Common operands between DD and PD operand trees.
7. UNIQUE : Number of unique operators/operands.

8. OCCURENCE : Total number of operators/operands.

Module: SOFIMET
Functional Description:

This routine produces the final values of all the software science

metrics for Data and Procedure divisions.

Interface:

ouT IN
1. UNIQUE: Number of unique operators/operands for
Data or Procedure divisiom.
2. OCCURRENCE: Total number of operators/operands for
Data or Procedure division. |

3. N: Program length ’

4, ETA: Vocabulary

5. NH: Estimated program length
6. V: Program volume

7. LH: Program level " Software Science
8. LAMDAH: Language level Metrics

9, INTELL: Intelligence content

10 EFFORT: Programming effort

Module: PRNTWID
Functional Description:
This module generates files containing the frequency distribution of

all the tokens in both Data and Procedure divisions.

Subprocessges:

1. Traverse the operator/operand tree using an inorder traversal algorithm.

2. Construct records containing the frequency distribution of the tokens

Interface:
STAT
«
o |2
- ~
vt
PRNTWID
~
+18
& e
1Ry
TRAVERSE
ouT IN
1. 1. TOP: Root of a given frequency tree
2. 2. SYSUTO : File containing frequency distributions of tokens
in Data division.
3. 3. SYSUTL : File containing frequency distributions of tokens

in Procedure division.

4, RW-REC: 80-character record of SYSUTO or SYSUTL.

Y

80

Module: TRAVERSE
Functiona] Description:
This recursive subroutine is used to traverse a particular frequency

tree and produces records of the file SYSUTO or SYSUTI] <

Subprocess:
1. At every node of the frequency tree, find the frequency counts of he

token and write 80-character record (NODE- OUT).

Lk kit e D Bt A

Interface: i i
PRNTWID
"
o s
- |3
1h
TRAVERSE
~ ™
it
NCDE- QVUT
ouT IN

1. TOP : Root of a given frequency tree
3. PW-REC : 80 character record of SYSUTO or SYSUTI
2. TREE-NODE : Node unit of the operator/operand tree

4, SYSUTO : File containing information for Data division

5. SYSUT]1 : File containing information for Procedure division

Module: NODE-OUT
runctionsl I orion:

Given a frequency

A A L ___ 3

' count of the tokem. It

! Interface:

ouT N

tree node, this subroutine finds the frequency

also writes 80~-character record of SYSUTO/SYSUTI.

TRAVERSE

W

NODE-QVT

1. TREE-NODE: Node unit of the operator/ operand tree.

2. PW~-REC: 80-character racord of SYSUTO or SYSUT1

31

RNV SR PUUCUC U S PO,

82

Module: REPORT
Functional Description:

| This module produces well documented output, produced by the

analyzer, for a COBOL program.

Subprocesses:
1. Read the files SYSUTO, SYSUT]1 and SYSUT2.

A e

2. Use SYSUTO to produce the frequency distributiom of the tokens
as vell as software metrics for the Data division.
2. Use SYSUT] to produce the frequency distribution of the tokens
as wvell as software metrics for the Procedure division.
3. Use SYSUT2 to provide the software metrics for the entire program

4, Print all the information of steps 2, 3, & 4.

Interface:

STAT

3

' |

€,

REPCRT

$

—> 6,7
v

PRINTI1 GETOk¢

FETOK Y

oUT

2.

ot i amce g

ouT

™
1.
2.
3.
5.
6.
7.

SYSUTO :
SYSUTL :
SYSUT2 :
WIDIPLA

BUFFERO :

All the information for DD
All the information for PD

Suzmary record for the program

: Output line of 133 charscters

Buffer containing token strings of DD

FREQG : Frequency counts of tokens in DD

BUFFERL

: Token strings of PD

9. FREQ 1 : Frequency counts of tokens in PD

Interface:

Module: Printl

Functional description:

This routine prints each output line of the final report.

e |

4. BODY : Information to be printed.

10. Final Output of the Analysis.

REPORT

Wt

PRINTY

1. BODY: Information to be printed.

2. VIDIPLA: Output line of 133 characters.

.

83

Module: GETOKO
i scription:
It reads the file nasmed SYSUTO, transfers characters from the input
string into the buffer and also captures the frequency counts of the

corresponding token string.

Interface:

RE PCRT

-l

¥/
GETCk gy

R

75

GETKkARY

ovUT Jo. |
1. SYSUTO: File containing the information of DD.
5. KAR: Current character in process.

2. BUFFERO: Buffer containing the token string of DD.

3. FREQO: Frequency counts of the token.

4, INPUT-RECO: Each record of SYSUTO.

o s

at G et D k™

AN

Module: GETKARO
Punctional I eion:

Given each record of the file SYSUTO, this routine captures one

character at & time until the end of record is encountered.

In ac :_
-GETOkﬁ
-
vit
GETkARY
ouT N

1. INPUT-RECO: Each 80-character record of SYSUTO.

2. KAR: Current character in process.

Module: GETOK1
Functional Description:

It reada the file named SYSUT1, transfers characters from the inmput
string into the buffer and also captures the frequency count of the

associated token string.

Interface:
REPORT

3

i1

GETok 1

_’_U\

o T

GETKAR L

85

B e LTS - FP NI M

56

l. SYSUT1: File containing the information of PD.

‘ OUT N
i

!

, 5. KAR: Current character in process.
!

2. BUFFERl: Buffer containing the token string of PD.
3. FREQl: Frequency count of the token.

4. INPUT-REC1: Each record of SYSUTI.

Module: GETKARI

Functionsl Description:

Given each record of the file SYSUT1, this routine captures one

character at a time until the end of record is encountered,

Interface:
&GETok1
-
vt
GETKAR L
ouT N

1. INPUT-RECl: Each 80-character record of SYSUTI.

2. KAR: Current character in process.

APPENDIX - B

FILE DESCRIPTIONS

This appendix contains the operator and noiseword file listings used
when the analyzer is run in default mode. Files for both Data and
Procedure divisions are included. The members of these operator and
noiseword files (B.l to B.4) are used to comstruct and initialize the
fundamental data structures, namely the operator and noise trees, used

in analyzing a COBOL program. Finally, the production JCLs to runm the

analyzer are shown.

, 8.1 : DEFAULT OPERATOR FILE FOR DATA DIVISION (OPERO)
g 1. ..
' 2. FD
3. LABEL
4., BLOCK
S. OMITTED
6. DATA
‘ 7. STANDARD
! 8. VALUE
| 9. LINAGE
; 10. FOOTING
| 11. TOP
12. BOTTOM
13. CODE-SET
14. RECORD

15. RECORDING

16. REDEFINES

17. PICTURE = PIC

18. USAGE

19, SIGN

20. LEADING

21, SEPARATE

23. OCCURS

24, TO

25. DEPENDING

26, ASCENDING

27. DESCENDING

28, INDEXED

29. SYNCHRONIZED = SYNC

30. JUSTIFIED = JUST

31. BLANK

32. RENAME

33. THRO

34, TIMES

35, DISPLAY

36. COMPUTATIONAL = COMFP

37. COMPUTATIONAL-1 = COMP-1
38. COMPUTATIONAL-2 = COMP-2
39, COMPUTATIONAL-3 = COMP-3
40. LEFT

41. RIGHT

AD-A130 899 A SOFTWARE SCIENCE ANALYZER FOR COBOL -REVISION{U) OHID 1/2
STATE UNIV COLUMBUS COMPUTER AND INFORMATION SCIENCE
RES. K C FUNG ET AL. 1982 OSU-CISRC-TR-83-2-REV
UNCLASSIFIED ARD-17150.3-EL DAAG29-80-K-0061 F/G 9/2

HNL'_Q e ”:,t;uz;z

S
e
22 e poe

B.2

1.
2.
3.
4,
5.
6.
7‘
8.

10.
11,
12,
13,
14,
15.
16.
~17.
18.
19.

: DEFAULT NOISEWORD FILE FOR DATA DIVISION (NOISEO)

ARE

1s

ON

BY

REPORT
LINKAGE
WORKING-STORAGE
FILE
CONTAINS
MODE
CHARACTERS
CHARACTER
LINES
WITH

AT

KEY

WHEN
DIVISION
SECTION

89

9

B.3 : DEFAULT OPERATOR FILE FOR PROCEDURE DIVISION (OPERL)

1. =

2. (

3. ’

4. /

5. .MOVE

6. .DIVIDE ;
7. .REWIND '
8. .CLOSE

9. .SORT

10. .EXIT

11. .RELEASE
12. <ACCEPT
13. .SUBTRACT
14, .COPY

15. .SEARCH
16. .GOBACK

17. +RESET
18. .READ

19. .ELSE

20. .UNSTRING
21. .ADD

22. WRITE
23. .CANCEL
24, .STOP

25, .COMPUTE
26, .SET

27, .DISPLAY
28. REWRITE
29. +ENTER
30. +RETURN
31. +EXAMINE

32, +READY
33. .IF
34, .OPEN

35. .INSPECT
36. LMULTIPLY

37. AND

38, WHEN

39. FOR

40, GIVING
41. EXCEPTION
42, NOT

43, EXTEND
4,. FILE

45, FIRST

46. 1-0

47. POSITIONING
48. REEL

49. REPACE
50. UP

51. POINTER
52. TALLYING

bt i+ o o Wi

s s e

53.
54.
5S.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68

69

70.
71.
720
73.
74,
75.
76.
17.
78.
79.
80.
81.
82.
83.

85.
86.
87.
88.
89.
90.
91.
92,
93.
9.
95.
96.
97.
98.
99.
100.
101,
102.
103.
104.
105.
106.

DELIMITED
DEPENDING

DISP

LEADING

BEFORE

ERROR

TIMES

END

TRANSFORM

UNTIL

INTO

INVALID

REMA INDER
BEGINNING

COUNT

EXRIBIT

NEXT

UNIT

UPON

LOCK

USE

USING

VARYING

OR

REMOVAL

MERGE

DOWN

SUPPRESS

ENDING

ENTRY

OUTEUT

AFTER

ALL

REPLACING

ROUNDED

SEQUENCE .

START

STRING

INPUT

CHANGED
CHARACTERS

NAMED

BY < REPLACE < UP < DOWN < DELIMITED
PROCEDURE < LABEL
FROM > CHARACTERS
CORRESPONDING = CORR
T0 < EQUAL < PROCEED
ERROR > SIZE > ON
ON < DEPENDING
ELSE = OTHERWISE
TO < PROCEED

ON < OUTPUT < INPUT < I-0
DESCENDING > ON
GREATER = >

9l

107. END-OF~PAGE=EOP 92
108. EQUAL=w :

109. PROCEED < TO

110. LESS = <

111. PROCEDURE > OUTPUT > INPUT

112. ALL > SEARCH

113. OVERFLOW > ON

114. ASCENDING > ON

115. THROUGH = THRU 3

Note that the minus sign is not included in this list since it is

indistinguishable in form from a hyphen., The analyzer resolves this
ambiguity by context, Other context sensitive operator information

appears explcitly in the action at the end of the file.

L .
l B.4 : DEFADLT NOISEWORD FILE FOR PROCEDURE DIVISION (NOISEl)
\

1. H 1
2. THAN

' 3-)
4, THEN
S. R
6. ADVANCING
7. AT
8. LINES
9. RUN
10. 1S
11. SKIP1 -
12, SKIP2 ?i
13. SKIP3
14, EJECT

B.5 : File, INITW, which generates output for production purposes (see
WIDJET in B.9).

1. MODE = “PRODUCTION”

2. GO

3. PERFORM
4, CALL

5. ALTER

6. NOTE

70 -

8. PROCEDURE

9. PROGRAM-ID

10. DATA

11. $JoB

12. IDENTIFICATION

B.6 :

1.
2.
3.

10.
11.
12,

Note:

File, INITR, which generates output for debugging purposes (see
OSUCNTPM).

MODE= “DEBUG”
GO

PERFORM

CALL

ALTER

NOTE

PROCEDURE
PROGRAM-ID
DATA

$J08
IDENTIFICATION

“PRODUCTION” is the production mode, which gemerates the regular

output (see section 3.3). On the other hand, “DEBUG” is the debugging

mode.

Its output consists of a trace of input stream tokens helpful for

debugging purposes. The output of this mode is different from that

obtained in production mode.

B.7 :

1.
2.
3.
4,
5.
6.
7.
8.
9.
10.
11.
12.
13.
14,
15.
16.

PRODUCTION JCL (OSUCNTPM)

!l EXEC PGM=OSUCNTPM

//STEPLIB DD DSN= TS0618.LOADLIB,DISP=SHR

//OPER DD DSN=TS0618.CSLIB(OPER1),DISP=OLD,UNIT=USERDA
//OPER2 DD DSN=TS0618.CSLIB(OPERO),DISP=OLD,CNIT=USERDA
//NOISE DD Dsn-rsosls.CSsz(NoxszlS,nxsr-OLn,uuxr-UsznnA
//NOISE2 DD DSN=TS0618.CSLIB(NOISEQ),DISP=OLD,UNIT=USERDA
//INIT DD DSN=TS0618.CSLIB(INITR),DISP=OLD,UNIT=USERDA
//SYSPRINT DD SYSOUT=A

//WIDIPLA DD SYSOUT=A

//WIDSUMO DD DUMMY

//WIDSUM1 DD DUMMY

//WIDSUM2 DD DUMMY

//WIDFREQ DD DUMMY

//SYSUTO DD DSN=TS0618.CIS2212.SYSUTO,UNIT=USERDA,DISP=0LD
//SYSUT1 DD DSN=TS0618.CIS212.SYSUT1,UNIT=USERDA,DISP=0LD
//SYSUT2 DD DSN=TS0618.CIS212.SYSUT2,UNIT=USERDA,DISP=OLD

This JCL invokes the analyzer and generates hard copy of the analysis

report, but does not store the analyzer output into a separate disk

file for future use.

94

- e

B.8 : JCL FOR INVOKING WIDJET (INTERNAL)

/7 EXEC PGM=IERGENER

//SYSUT2 DD SYSOUT=(AsINTRDR) »UCB=(RECFM=FB,LRECL=80,BLKSIZE=80)

//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY

//SYSUT1 DD DSN=TS04618.WIDJET,DISP=0LD,UNIT=USERDA
7/ DD DDNAME=PROGRAM

This JCL file called INTERNAL is used to invoke the production JCL
required to run the analyzer through the on-line terminal. 1In
particular, WIDJET or WYLBUR users invoke INTERNAL, which in turn

invokes the JCL file called WIDJET through the internal reader.

B.9 : PRODUCTION JCL (WIDJET)

0.01 //COUNTPGM JOB ‘FRB080,212313080°‘, ANALYZER» C. ‘

0.02 /%JOBPARM V=D
0.03 /77 EXEC FPGM=0SUCNTPM

0.04 //STEFLIB DD DSN=TS0618.LO0ANOLIByDRISP=SHR
0.05 //SYSPRINT DD SYSOQUT=A

" 0.09 //WIDIPLA DD SYSOUT=A

0.14 //0FER DD DSN=TS0618.CSLIE(OPER1)sDISF=0LD,UNIT=USEFRDA
0.15 //0FER2 DD DSN=TS04618.CSLIB(OFERQ)DISF=0LD,»UNIT=USERIA
0.16 //NOISE DD DSN=TS0618.CSLIB(NOISE1),DISF=0LDsUNIT=USERDA
0.17 //NOISE2 DD DSN=TS0618.CSLIB(NOISEO) DNISF=0LDyUNIT=USERDA
0.18 //INIT DD DSN=TS0618.CSLIBC(INITW)DISP=0LD,UNIT=USERDA

0.21 //WIDSUMO DD DUMMY

0.2

2 //WIDSUM1I DD DUMMY

0.23 //WIDSUM2 DD DUMMY

.24 //WIDFREQ DD DSN=TS0618.CIS212.FREQRyUNIT=USERDAsDISF=(MOD,CATLG) ,

0.241 // ODCB=(RECFM=FB,LRECL=80,BLKSIZE=80+DSORG=FS)

0.

242 // SPACE=(TRKr (50,20))
0.29 /7/8YSUTO DD DSN=TS0618.CIS212,SYSUTO,UNIT=USERDA,DISF=0LD

0.26 //SYSUTY DD DSN=TS0618.CIS212,SYSUT1UNIT=USERDA,DISF=0LD
0.27 //8YSUT2 DD DSN=TS0618.CIS212,.SYSUT2yUNIT=USERDA»DISF=0LD

.28 //SOQURCE DD x

F O VI

el

This JCL file called WIDJET is used to run the analyzer and to collect

Software Science data from studemt COBOL programs at Ohio State
University. One should note the file “FIDFREQ” and its parameters.
In particular, DSN = TS0618.CIS212.FREQ gives the file name on the
disk where all the data from the analyzer is to be collected, and the
SPACE parameters provides sthe primary and secondary storage
allocation for this disk file. In the present case, the primary

storage allocation for TS0618.cis212. would be 50 tracks and the

secondary allocation is 20 tracks (up to 16 extent),

.

NN

2o

B.10

THE EXEC PROGRAM INVOKED BY THE "ANALYZE" COMMAND

SET EXEC NOLOG TERSE

ON ERROR

ON ATTN

SET VALUE SO LAST

IF (SO EQ 0.000) EXEC 11.01

COMMENT SXXXXXXXXXIXBAXZXAXEXXXAXEXEXXXXXXEXXXEERENRKAXK
COMMENT THE ACTIVE FILE MUST BE EMPTY TO RUN THE
COMMENT ANALYZER. TRY AGAIN AFTER SAVING THE FILE IF
COMMENT NEEDED AND ALSO CLEARING THE ACTIVE FILE.
COMMENT SRXEXXXEXXXEXBEXAXRXXXREBEXXEXXXEE XA ERXXAXEREXEXKE
EXEC S4

COMMENT

COMMENT WHICH COURSE IS THIS(212 OR 3137

READ STRING SO

IF(SO EQ@ '212’) EXEC 12

IF(SO EQ “313’) EXEC 61

EXEC 11.01

CLEAR ACTIVE

SET ESCAPE & .

COMMENT WHICH OF THE FOLLOWING LAB NUMBERS DO YOU WANT ANALYZED?
COMMENT

COMMENT 02 03 04 035 04

COMMENT

READ STRING S1

IF(S1 EQ@ "027) EXEC 28

IF(s1 EQ ‘03’) EXEC 28

IF(S1 EQ ‘04’) EXEC 29

IF(S1 EQG '03’) EXEC 28

IF(S1 EG ‘06°) EXEC 28

COMMENT

COMMENT 22XXXXXxINVALID LAB NUMBERXXXXRRXX

COMMENT

COMMENT PLEASE RE-ENTER THE LAB NUMBER AGAIN.

EXEC 14

SET VALUE S2 SUBSTR(GROUP»3s1)!!'USER

COMMENT WHAT IS YOUR LAST NAME?

READ STRING S4

COMMENT WHAT IS THE NAME OF YQUR LAP FILE?

READ STRING S3

IF (VERIFY(S3»‘$‘) EQ 2) COPY FROM &SI TO 10 BY 10
IF (VERIFY(S3,‘#‘) EQ 1) COPY FROM #28S3 TO 10 BY 10
POINT © JOB “

IF (CURRENT LT 0) EXEC 40

SET VALUE uWi=x

POINT ‘$J0B’~

SETF-VALUE W2=x

DEL gwi/suw2

POINT /7

IF (CURRENT GT 0) EXEC 44

SET VALUE W3=x

99999.99 //

0.001 // JoB

0.002 /%JOBPARM V=D

9.003 //PROCLIB DD DSN=TS0618.PROCLIB

0.004 // EXEC INTERNAL
0.005 //FROGRAM DD &

0.006 $J0B 151182 1S4
RUN

COMMENT LAB $S1 HAS BEEN ANALYZED UNDER THE TCIST NUMBER.
SET ESCAPE ’~

CLEAR ACTIVE

CLEAR EXEC

CLEAR ACTIVE

SET ESCAPE ¢

COMMENT WHICH QF THE FOLLOWING LAB NUMRERS DG YOU WANT ANALYZED?
COMMENT

COMMENT L1 L2 L3

COMMENT

READ STRING S1

IF(S1 EG ‘L1’) EXEC 28

IF(S1 EQ ‘L2’) EXEC 28

IF(S1 EQ ‘L3’) EXEC 28

COMMENT

COMMENT sxxXXxXxINVALID LAK NUMBERXXAXXXXX

COMMENT

COMMENT PLEASE RE-ENTLCR THE LAB NUMBER AGAIN.

EXEC 43

97

mhaMaa. o

B.

11: SAMPLE HANDOUT

CIs 212

Instructions to run the Analyzer

Run your final version of the program to get the printout for submission. AFTER YOU GET
THE FINAL AND CORRECT OUTPUT, USE THE FOLLOWING STEPS TO RUN THE ANALYZER.

1. Clear your active file by using the Command: CLEAR ACTIVE

2. Type the following command:

Command? ANALYZE

After you have typed the ANALYZE command and pressed the RETURN key, you will be asked
the following questions. Simply insert the answer to these questions.

Questions would be asked

a. What course is this? (212 or 313) a.

b. Which of the following lab numbers
do you want analyzed? b.

02 03 04 05 06

¢. What is your Last Name? c.

d. What is the name of your Lab file? d.

Answers to be submitted

Enter 212

If you want
If you want
If you want
If you want
If you want

to
to
to
to
to

analyze Lab2, Type
analyze lab3, Type
analyze Lab4, Type
analyze Lab5, Type
analyze Lab6, Type

Enter your Last Name

Icﬂcﬂcaolo
alnlslo|s

Enter the actual file name that you
have used to save your Llab.
(For example, if you are analyzing
Lab2, and the actual file name for
Lab2 is PROG2 then enter PROG2).

After you have answered these questions, wait till you get the following message:

LAB (02 or 03 or 04 or 05 or 06) HAS BEEN ANALYZED UNDER THE TRnnnn NUMBER

Where nnnn is the 4-digit number of your personal user-id. As soon as you get this message,

you are done with the analyzer.

If you have any question, comment or difficulty, please see your instructor or Mr. DEBNATH

in CL 418.

THANK YOU and GOOD LUCK

Maintenance Procedure

The Software Science COBOL Analyzer deveioped at 0SU is a significant
component of the Software Metrics Research Group in the Department of
Computer and Information Science. The Analyzer is used to collect data
from the students of undergraduate COBOL classes (e.g. CIS212, CIS3l3),
needed to pursue further research in Software Science. In addition to the
students” programs, various kinds of COBOL programs are also collected for
analysis from the University Systems Computer Center as well as from other
organizations. Therefore, the person responsible for maintaining the
Analyzer has direct interaction with many different groups of people. The
present section provides a few of the major steps to be followed for
maintenance of the Analyzer. Particular attention is given to its

interface with undergraduate COBOL classes,

16O

Procedure:
1, It is important to become familia; with the working of the analyzer
program as well as to know how to use the analyzer in the 0SU enviromment.
2. The handout containing the necessary imstructions to rum a job through
the analyzer should be provided to each student at the beginning of the
quarter (see sample handout in Appendix-B)
3. CREATE THE DISK SPACE

Before the students start running their jobs through the analyzer,
space should be created on the disk in order to collect the students”
output from the analyzer. Currently the disk file called “CIS212.FREQ” is
used for this purpose. The disk space for the file “CIS212.FREQ” is
created according to the SPACE parameter used in the JCL file called WIDJET
(see Appendix-B); e.g.

SPACE = (TRK, (50,20)) , DISP = (MOD, CATLG)
Thus, the size of this disk file can be changed simply by changing the

SPACE parameter as desired.

4. ARCHIVE THE DATA ON THE DISK

Disk space is very expensive and the collected data on the disk is
not usually used during the quarter. Therefore, these data must be
archived to tape using the ASM2 commands [IRCC ASC2 Manual] quite
frequently. It is strongly suggested that every 50-100 tracks of data
should be archived to tape. The archive commands, $AR, provides the user

with the ability to archive the specified data set(s) to tape,

Example : $AR “DSLIST”

DSLIST” is the list of input data set names

5. ASSIGN APPROPRIATE NAME AND MAXIMUM RETENTION PERIOD FOR THE FILE TO BE
ARCHIVED

While archiving the data from the disk, the file should be assigned a
name which is different from the original diek file name and from any
previously archived file name. The new file name should reflect the name
of the quarter when the data was collected. This helps recognize the file
easlly when using it after a long period of time. One should also specify
the maximum retention period (e.g. 365 days) for the file being archived to
tape.

The archive command [asm2 Manual] to be used in order to satisfy the
requirements of step4 and 5 has the following syntax.

SAR “DSLIST” RETPD (“INTEGER”) QUAL (“QUALIFIER”)

Operands:
“DSLIST” - List of input data set names.
RETPD (“INTEGER”)
- Specifies the desired retention period on tape
- “INTEGER” - a 1 to 3 digit value which defines the number of days the
user wishes to have the specified data set retained on archive tape.
QUAL (“QUALIFIER")
- causes the data set to be renamed when archived
“QUALIFIER” - a 1 to 8 character string in which the first character must

not be numeric.

Example:

$AR CIS212,FREQ RETPD (365) QUAL(FALL1981)

1ol

o e

This example illustrates that the disk file named CIS212.FREQ would be
archived to tape with a new name CIS212. FALL1981.FREQ, and that a 365 day

retention period would be in effect.

6. RETRIEVE THE ARCHIVED DATA SET AND PRODUCE QUARTERLY REPORT.

At the end of the quarter, the data collected for the entire quarter
should be restored on the disk to produce two different quarterly reports.
The first report provides informatiom concerning which students have run
which course labs through the analyzer. This report can be provided to the
instructors of the course in case course grades are influenced by the
students’ use of the analyzer. The second report summarizes the Software
Science metrics collected for all the programs during the quarter, and is
used by the software metrics research group.

Both reports require some sorting of the data. The procedure for
producing the reports is described below.
(a) The sort keys for the first report is as follows
Keyl : Students account number

KeyZ : Lab number.

It is desirable that each page of this report contain the account number of
a particular student and the lab numbers which were run by this student
during the whole quarter. This format makes it easier for the course
instructors to use this information for grading purposes. Presently, a
program called "BONUSREP" generates this report. This report should be
distributed to all the course instructors before the final examination

begins.

(b) The second report should be sorted according to lab numbers so
that all the data for each lab appear together, This makes the
analysis convenient., Currently, a program named "REP" is used to

produce this quarterly report.

The ASM2 command SRA (Reload from Archives) can be used to restore an

archived data from an archived tape to an on-line disk pack, and has the
following syntax.

$RA “DSLIST”

Example:

$RA CIS212.FALL19S1.FREQ
The use of this reload command will allow the desired data sets to be
reloaded into the disk. After transfering all the required data to the
disk, the programs "REPBONUS™ and “REP" can be run on these data for

producing the above reports.

The following wylbur commands are used to run "REP" and "REPBONUS",

Command? SET GROUP TSl
Command? SET USER 483
Command? USE REP (or REPBONUS) ON CATLG

Command? RUN

7. FREE UP THE UNNECESSARY DISK SPACE.

After producing the quarterly reports, all disk spaces must be freed
as quickly as possible, either by scratching all the dats sets or by
archiving these back to tape depending on whether a copy of the data sets

already exist on tape or not.

The following Wylbur command is used to scraich a data set from the disk.
Command? SCRATCH (Data set name)
The same $AR command, as discussed above, is used to archive the data set

to tape.

Note that maintenance of the amalyzer involves handling a large number
of important files existing on disk a8 well as on tape. In order to
maintain these files efficiently, one should remember that only those files
which are used very often should be kept on disk; other files should be
saved on tape. The retention period of all files on tape MUST be checked
periodically by using the $AI (Archive Catalog Information) Command [ASM2
Manual], and the expiration date must be updated if necessry. Another
possibility is that the data can be saved on a personal tape. Otherwise,

it is possible that important data will be lost.

Finally, the programs collected {rom sources other than OSU courses
should be run through the analyzer using the necessary JCL, and the output
should be saved on separate files, if possible., The present JCL called
"JCLTAPE" is used to run the programs that are collected from the
University Systems Computer Center and from other organizations. The
output from the analyzer is collcted on the separate disk file called

"US.FREQ". Since the source programs for these analyses exist on a

104

105

personal tape, it is possible to scratch the disk file ~ontaining the
results of the analyses after producing the final report (report #2

described earlier in this section). NO archiving of the analysis dats is

necessary for these programs.

APPENDIX - D

INVOKING THE PURDUE ANALYZER AT IRCC

D.1: JCL REQUIRED TO RUN THE PURDUE ANALYZER

For comparison purposes a COBOL analyzer written at Purdue University can
be run at the IRCC of Ohio State University using the following JCL.

//J0OB

//REGION=512K \
/*JOBPARM LINES=7000,DISKI0=5000 i
//SA EXRC COBSORT i
//COB.SYSIN DD*

»
. i

(TS1483.COBOL.KEYWORD.FILE file)

/*

//GO.SORTFIL DD UNIT=SYSVIO,SPACE = (CYL,(1,1))

//GO.KEYWD DD DSN=TS1483 .KEYWORDS.DATA,
UNIT=USERDA,DISP=(NEW, CATLG),
SPACE=(CYL,(1,1)),
DCB=(RECFM=FB, LRECL=30 ,BLKSIZE=300)

//SECOND EXEC COBUCG, TIME=10
//COB.SYSIN DD *

. . L] L

(1751483 .PURDUE,.COBOL.ARALYZER file)

/%

//GO.SYSIN DD

(COBOL program)

/* '

//GO.KEYWD DD DSN=TS1483.KEYWORCS.DATA,UNIT=USERDA, DISP=SHR
//GO.OUTPUT DD SYSOUT=A

/! DCB=(RECFM=FBA,LRECL=133 ,BLKSIZE=133)
//GO.SUMFILE DD SYSOUT=A,
/1 DCB=(RECFM=FBA, LRECL=133 ,BLKSIZE=133)

The Purdue Analyzer comsists of two separate programs, namely, SORT-TAB and
ANALYZE. Both of these files have been compiled with necessary
modifications using the standard COBOL compiler at Ohio State University,
and renamed as TS1483,COBOL.KEYWORD.FILE and TS1483.PURDUE.COBOL.ANALYZER,
respectively. The first program generates a file of predefimed COBOL
keywords and noisewords, while the second program analyzes any COBOL source
program given as input using the counting strategy defined by the first

program.

One should note that the COBOL program to be analyzed should include
both the Data and Procedure divisions. Separate analyses will be done for

the two divisions, using the predefined counting strategy developed at

Purdue University.

P

b .

D.2: OUTPUT OF THE PURDUE ANALYZER

The output of the Purdue Analyzer consists of the listing of the

input file followed by the statistics for the entire program.

Statistics

include the list of operators and operands along with their corresponding

frequency counts for both the Data and Procedure divisions,.

The summary of

the basic software metrics values, namely, ETAl, N1, ETA2, N2, N, NHAT and

REL ERROR are also produced.

analyzer is included for completeness.

0PERATOR

ASSIGN
BLOCK
FD

PRINTER-FILEI
PRINTER-FILE2
x(8)
CURR-DATE

0

PR-MM

STATISTICS FOR TH1S MODULE

DATA DIVISION

FREQUENCY
9

FREQUENCY

O~ WN NN

A sample output generated by the Purdue

PROCEDURE DIVISION Lo

(.PERATOR FREQUENCY
' ACCEPT 1
ADD 16
: CLOSE 1
: MOVE 76
OPEN 1
PERFORM EDIT-CHECK 1
PERFORM HEADER-PR1 1
ETAl =
N1 =
OPERAND FREQUENCY
PRINTER-FILE1 2
PRINTER-FTLE2 2
31 1
l*l l
CURRENT-DATE 1
CURR-DATE 2
h]
? N2 =
j
{
|
i ETA2 = _
N2 =
DATA PROCEDURE MODULE
FTAL 8 31 39
N1 238 269 507
=TA2 74 84 24
N2 159 358 517
N 397 627 1024
SHAT 483 690 822

KEL FRROKZ(N) 0.1780 0.0913 0.2457

D.3: COMPARISON BETWEEN OSU AND PURDUE ANALYZER

The following differences have been observed between the outputs of the

two analyzers,

PURDUE

DD Operator: ASSIGN and SELECT
are treated as DD
operators.

LABEL, RECORD and
STANDARD have been
skipped.

DD Operands: FILLER and labels
are not counted;
Some x(n)”s in PIC s
are not counted also.

PD Operators: Operators such as
TO, INTO, NEXT, AFTER
FROM, INPUT, OUTPUT,
CORRESPONDING, EQS are
skipped altogether
from the operator
operand list.

NUMERIC is treated
as an operator.

EQUAL, NOT EQUAL are
treated as separate
operators. Similarly
GREATER, NOT GREATER
etc.

Instead of End of state-
ments (EOS), Purdue
counts required periods.

PD Operand counting is very comparable, except that in the OSU analyzer

0SU

ASSIGN and SELECT
are not taken

into comnsideration,
Instead LABEL,
STANDARD are treated
as DD operators.

FILLER, labels and
all x(n)s are
counted.

all the standard
operators are
counted; major
differences come
from EOS is TO
counts. EOS is the
number of verbs.

NUMERIC is treated
as an operand.

NOT and EQUAL are
separated and
treated as two
different operators.

there are some additional operands e.g. SENTENCE, OF.

110

B

It is noted that (1) the main difference in counts come from DD operands

and PD operators. (2) The Purdue analyzer does not count PD operators like
TO, FROM (which are used with arithmetic verbs and sometimes are not
optional e.g. in Move A TO B, TO is not optional but in A EQUAL TO B, TO is

optional; there are many such examples). OSU counts all these required

operators.

* S———— e —— Ormm———
. IR L
SLOGURITY 0 ASYIE L, Tk o Tt . . e
. s et zsuii-‘ll\l.k zu" :
RCPORY DOCU L N i A | “JN PAGE G QR COMPLE T !
T REPORT NUMBER "z OV AE 510N RO 3 HEC RIS AT AL Ly e s —1‘
- < ' "
17150.3-EL) HP /” T (|
4 ML E (end Nubittie [T B D B R F R) L B R TR AL B Lot
: - Technical :
A Software Science Analyzer for COBOL :
(:wf;:u—;o;ﬂ_ATNC‘y—O.RGW;(l X1 IR A lf-\u“ "
U S S R e
(7. AUTHOR(9) 8 CONTHRACT GR GRAN T hambiwie,
. L. n
K Fune DAAG29 80 K 0061
N. C. Debnath
S. .. Zweben
Y 2 > T . - o) - T v i, A i,' XN JoitiedgL ALY -
" "Bhia State University R e e
a i
i y
Columbus, H 143210
T CONTROLLING OFFICE NAME AND ADDRESS ' 17 REPGRT DATE
U. S. nrimy Research Office o 19R2 o
Post Ofice Box 12211 T3 WuMBER OF PAGLS
Rescarch Iriangle Park, HL 27704 118 —
1 I O TORING ACENCY NAME & ADDRESS(I! diilerunt from Controlling Office) |15 SECURITY CUASS. (ol this rapurt
_ Unclassificd T
15a DtCLASSIFICATION DOWNGRADING
SCHEDULE
— _]
16. DISTRIDUTION STATEMENT (of thts Report)
1 Approved for public release; distribution unlimited.

17. DIST RlEjuTION 'TATEMCNT (ot lha abstract sntorod In Ulurk 10 N ditfferent from Ifupun)

18. SUPPLEMENXTARY NOTES

The view, opinions, and/ar tindings contained in this jeport are those of the
author{s) and whould not be construed as an official bepartment of the Army
position, Holicy, or dc(isiun, anless s designated by other documentaton

20. AGSTRACT (Continue en reverse sidw If nucwesary aad idenzify by black number)

An analyzer of COBOL programs which computes the metrics from software science
is deseribed. “he report discusses the overall desian of the analyzer,
including detailed descriplions of cach of its modules. It also contains
instructions for the usc and maintenance of the analyzer at Ohio State Universi{

,'12:“" 1473 ©01T10M OF 1 HOV 65 15 DUSOLETE UNCLASS T LD,

'
'

- b

Ht \.,l,INTY ('LASSID |(AYI()N QF TNI‘ P AGLE When [late I'nterewy) [

